首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
洛谷 [国家集训队]单选错位
2024-10-30
洛谷P1297 [国家集训队]单选错位_数学期望
考虑第 iii 位, 那么当前共有 a[i]a[i]a[i] 种选项,那么当前选项正确的情况就是下一个被误填的答案与当前答案相同.换句话说,当前答案一共有 a[i]a[i]a[i] 种可能,而下一个答案有 a[i+1]a[i + 1]a[i+1]种可能,那么总共有 a[i]∗a[i+1]a[i]*a[i+1]a[i]∗a[i+1] 种可能,其中,我们要去 min(a[i],a[i+1])min(a[i], a[i+1])min(a[i],a[i+1]) 作为分子(想一想,为什么).故每种答案的贡
P1297 [国家集训队]单选错位(期望)
P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可能涂到答案的概率为$(a[i+1]/a[i])*(1/a[i+1])=1/a[i]$,贡献为1 没涂到的概率为$1-1/a[i]$,贡献为0 期望值:$1*(1/a[i])+0*(1-1/a[i])=1/a[i]$ 2.$a[i]<a[i+1]$: 可能涂到答案的概率为$(a[i]/a[i+1])*(1
Luogu P1297 [国家集训队]单选错位
P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 \sum_{i=1}^n \frac{1}{a_i}∑i=1nai1 道题目.gx则是认认真
BZOJ2134 luoguP1297 [国家集训队]单选错位
单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对道题目.gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1
P1297 [国家集训队]单选错位
题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 ∑i=1n1ai\sum_{i=1}^n \frac{1}{a_i}∑i=1nai1 道题目.gx则是认认真真地做完了这n道题目
「期望」「洛谷P1297」单选错位
题目 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,-,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 道题目.gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目
BZOJ.2134.[国家集训队]单选错位(概率 递推)
题目链接 如题目中的公式,我们只要把做对每个题的概率加起来就可以了(乘个1就是期望). 做对第i道题的概率 \[P_i=\frac{1}{max(a_{i-1},a_i)}\] 原式是 \(P_i=\frac{min(a_{i-1},a_i)}{a_{i-1}\times a_i}\),化简后得到上式. 例:假设第i-1道有3个选项,第i道有5个选项,暴力一点,那么做对就是从3个中选1个和从5个中选1个相同的概率, 概率为 \(\frac{1}{3}\times\frac{1}{5}+\frac
Luogu P1297 [国家集训队]单选错位 | 概率与期望
题目链接 题解: 单独考虑每一道题目对答案的贡献. 设$g_i$表示gx在第$i$道题目的答案是否正确(1表示正确,0表示不正确),则$P(g_i=1)$表示gx在第$i$道题目的答案正确的概率. 我们要求的就是$\sum_{i=1}^{n} P(g_i=1)\times 1$. 那么我们该如何求解$P(g_i=1)$呢? 首先,结合题目可以得出以下结论: 设$s_i$为第i道题目的正确答案. 若$g_i=1$,则有$s_i=s_{i-1}$.特别地,若$g_1=1$,则有$s_n=s_1$.
[洛谷P4841][集训队作业2013]城市规划
传送门 题目大意 求出\(n\)个点的简单(无重边无自环)有标号无向连通图数目.\(n\leq 130000\). 题解 题意非常简单,但做起来很难.这是道生成函数经典题,博主当做例题学习用的.博主看到题解后感到非常惊讶:生成函数还能这么玩! 步入正题.首先我们要定义生成函数\(F(x)=\sum\limits_{i\geq 0}f_i\dfrac{x^i}{i!}\),其中\(f_i\)表示\(i\)个点无向连通图数目. 定义生成函数\(G(x)=\sum\limits_{i\geq 0}\d
洛谷 P4463 - [集训队互测 2012] calc(多项式)
题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出所有集合 \(S=\{a_1,a_2,\cdots,a_n\}\) 的权值之和,然后答案乘上 \(n!\). 那么怎么求这个权值之和呢?首先有一个非常 naive 的 DP,\(dp_{i,j}\) 表示 \(1\sim i\) 中选了 \(j\) 个数,可得的集合的权值之和,那么显然有 \(dp_{i,j
[题解] BZOJ 3456 洛谷 P4841 [集训队作业2013]城市规划 多项式,分治FFT
题目 令\(f_i\)表示n个点的答案.考虑容斥,用所有连边方案减去有多个连通块的方案.枚举1号点所在的连通块大小: \(f_i=2^{i(i-1)/2}-\sum_{j>0}^{i-1}f_j \binom{i-1}{j-1}2^{(i-j)(i-j-1)/2}\) \(\binom{i-1}{j-1}\)表示1号点必须在选出的连通块中,剩下的i-1个点中再选出j-1个.\(2^{(i-j)(i-j-1)/2}\)是剩下的点随意连边,但不跟选出的连通块连边的方案数. \[\begin{alig
[洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入格式: 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N*N个数,表示这个矩阵: 再接下来Q行每行5个数描述一个询问:x1,y1,x2,y2,k表示找到以(x1,y1)为左上角.以(x2,y2)为右下角的子矩形中的第K小数. 输出格式: 对于每组询问输出第K小的数. 输入输出样例 输入样例#
模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心,处理过重心的所有路径.然而,路径端点在同一子树(即路径实际上并不过重心)的情况会发生重复计数,需要使用类似容斥的方法,不断删去重复计数的部分.• B:采用类似树形背包的思路,遍历子树时,只考虑当前子树和先前处理完的多颗子树之间的路径,以保证路径端点在不同的子树中,防止重复计数,不需要麻烦的容斥.在一
COGS1882 [国家集训队2011]单选错位
★ 输入文件:nt2011_exp.in 输出文件:nt2011_exp.out 简单对比时间限制:1 s 内存限制:512 MB [试题来源] 2011中国国家集训队命题答辩 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少
洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2......(相信各位Dalao一定做过这道题) 这里的维护懒标记方法很像.除了翻转标记以外还要维护乘法标记和加法标记. 根据运算优先级,乘法是要先算的,所以先放,放的时候子树的\(sum\),乘法标记,加法标记,儿子的\(val\)统统都要乘一遍. 放加法标记的时候,想到线段树的区间大小是稳定的,而Splay
「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】
题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是待修的主席树. 然后查询的时候,两个根节点减一下就可以了. 解法2--带修莫队 这是带修莫队的模板题. 最简单的莫队是是一个二元组\((l,r)\),这里引入了一个新的参数,变成了三元组\((l,r,t)\),\(t\)所表示的是在这个查询最前面的哪一个修改的编号. 然后我们这个\(t\)当做第三关
⌈洛谷1505⌋⌈BZOJ2157⌋⌈国家集训队⌋旅游【树链剖分】
题目链接 [洛谷] [BZOJ] 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路径.换句话说, T 城中只有N − 1 座桥. Ray 发现,有些桥上可以看到美丽的景色,让人心情愉悦,但有些桥狭窄泥泞,令人烦躁.于是,他给每座桥定义一个愉悦度w,也就是说,Ray 经过这座桥会增加w 的愉悦度,这或许是正的也可能是负的.有时,Ray 看待同一座桥
洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(need\)个物品时的最大/最小权值和. 一般来说,我们求不限制个数的最大/最小权值和很容易,但在限制个数的前提下再求最值会变得有点困难.比较低效的做法是对状态再加设一个维度表示已选物品数量,然后通过DP等方法求出. 应用前提:设\(g_x\)为强制选\(x\)个物品的最大/最小权值和,如果所有的点对\(
洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就结婚,结婚不到两个月就离婚,是典型的"闪婚闪离"例子,而离婚的导火线是两个人争玩电脑游戏,丈夫一气之下,把电脑炸烂. 有社会工作者就表示,80后求助个案越来越多,有些是与父母过多干预有关.而根据民政部的统计,中国离婚五大城市首位是北京,其次是上海.深圳,广州和厦门,那
洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\),\(c\)这三个位置.我们要通过最少的跳动把他们的位置移动成\(x\),\(y\),\(z\).(棋子是没有区别的) 跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动.跳动后两颗棋子距离不变.一次只允许跳过1颗棋子. 写一个程序,首先判断是否可以完成任务.如果可以,输出最少需要的跳动次数. 输入
热门专题
特殊字符”<” 字符代码是( )
ef core 字段自增属性
K3CLOUD二开插入数据
el-dialog 滚动条样式
win10系统怎样删除远程桌面ip
http协议 boundary
ubuntu 软路由
计算并输出给定数组(长度为n)每相邻两个元素
docker 查看日志前100行
druid集群统一监控
div设置滚动条不显示,可以滚动
js的websocket连接超时设置
go validator 枚举
this实现鼠标点击按钮变色
js vaild一直返回false
java有符号数转byte
android 缩小安装包
html如何调用摄像头
smart.tomcat 指定classpath
js获取当前html所有代码