一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上