定义模型两种方法: 1.sequential 类仅用于层的线性堆叠,这是目前最常用的网络架构 2.函数式API,用于层组成的有向无环图,让你可以构建任意形式的架构 from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(32,activation='relu',input_shape=(784,))) model.add(layers.Dense(1
1.卷积神经网络中卷积的核心意义是什么?每一组卷集核 权重是一个抽特征的滤波器, 从卷集核的角度抽取特征 2.卷积神经网络很好的特性参数共享机制每一个神经元固定一组a x b x c(图像的通道数) 的参数w ,因此每一层网络的参数是 a x b x c x depth(神经元个数):a x b 代表卷集核比如(3 x 3):相比全连接的DNN 参数 w x h x c x depth 降低很多:例如:4 x 4 x 3 x 10(CNN) 418 x 418 x 3 x 10(DNN) 3.