前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习 理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html 实验基础说明: 1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用? 这一点,Ng
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型. 卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型.用卷积网络识别MNIST数据集. from keras import layers from keras import models mode