深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D
CVPR2020:点云弱监督三维语义分割的多路径区域挖掘 Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentat
利用NVIDIA-NGC中的MATLAB容器加速语义分割 Speeding Up Semantic Segmentation Using MATLAB Container from NVIDIA NGC 使用单一GPU训练深度学习模式的时代已经一去不复返了.对于计算密集型算法(如语义分割),单个GPU可能需要几天时间来优化模型.但多GPU硬件很贵.不会再有了:NVIDIA的云上多GPU硬件实例,比如AWS P3,只允许你支付你使用的东西.云实例允许您利用支持Tensor核心的最新一代硬件,以适度
语义分割:基于openCV和深度学习(一) Semantic segmentation with OpenCV and deep learning 介绍如何使用OpenCV.深度学习和ENet架构执行语义分段.阅读完今天的文章后,能够使用OpenCV对图像和视频应用语义分割.深度学习有助于提高计算机视觉的前所未有的准确性,包括图像分类.目标检测,现在甚至分割. 传统的分割方法是将图像分割为若干部分(标准化切割.图形切割.抓取切割.超像素等):然而,算法并没有真正理解这些部分所代表的内容. 另一方