在TensorFlow中所有的数据都通过张量的形式表示,从功能上看张量可以被简单的理解为多维数据,其中零阶张量表示标量(一个数),第一阶张量为向量(一个一维数组),第n阶向量可以理解为一个n维数组. 但是TensorFlow中实现并不是直接采用数组的形式,它只是对TensorFlow中运算结果的引用.在张量中并没有保存真正的数字,它保存的是如何得到这些数字的计算过程. import tensorflow as tf # tf.constant是一个计算,这个计算的结果是一个张量保存在变量a中 a
x = tf.placeholder(tf.float32, [None, 784]) x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensio
1.运行以下代码 import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], name="b") result = a + b print result sess = tf.InteractiveSession () print(result.eval()) sess.close() 得到 其中,add与代码中的add有关,0表示第一个输出,图中的
张量的定义 张量(Tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具.张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性.张量概念是矢量概念的推广,矢量是一阶张量.张量是一个可用来表示在一些矢量.标量和其他张量之间的线性关系的多线性函数(可以理解成是向量.矩阵以及更高维结构的统称). But we don’t have to restrict our