首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
用子集法将nfa确定化为表
2024-10-27
子集构造法实现NFA的确定化
功能: 采用子集构造算法实现NFA的确定化 输入:读取NFA的文件(文件名test.txt), 文件格式: 第一列表示状态名,第二列和第三列分别表示输入字符a和b到达的状态 输出:确定化后的DFA(文件名为output.txt),格式如下: 第一列表示输入状态名,第二列表示重新命名的状态名,第三列和第四列分别表示输入字符a和b所到达的状态 代码: #include <stdio.h> #include <string.h> /* 子集构造算法实现NFA的确定化 * 输入文件:te
NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意思!空串没有任何字符! 这里直接讲将ε-NFA转化为DFA的过程,将NFA转化为DFA的情况类似. 转化的过程总的来说有两大步骤:ε-NFA转化为DFA,以及DFA简化 ε-NFA转化为DFA前件知识 1.对状态图进行改造 增加状态X,Y,使之成为新的唯一的初态和终态,从X引ε弧到原初态节点,从原终
编译原理实验 NFA子集法构造DFA,DFA的识别 c++11实现
实验内容 将非确定性有限状态自动机通过子集法构造确定性有限状态自动机. 实验步骤 1,读入NFA状态.注意最后需要设置终止状态. 2,初始态取空,构造DFA的l0状态,将l0加入未标记状态队列que 3,当que不为空,取出一个状态依次做转移和取空操作,并构造出当前转移状态tmp. 4,如tmp是一个新状态,加入到队列中. 5,将构造出的DFA用作模式识别. 具体实现 1,文件读入NFA状态转换图,采用vector存储. 2,判断状态tmp是否是一个新的状态使用自定义hash方法. 3,取空操作
非确定的自动机NFA确定化为DFA
摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也
第八次作业-非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
编译原理之非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 语言为:(a|b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 2). 将下图NFA 确定化为 DFA 2.解决空弧:对初态和所有新状态求ε-闭包 1). 图转换为矩阵: 状态转换图: 识别语言为:0
作业八——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
第八次——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
编译原理:非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 解析: a b 0 {0,1} 0 1 2 2 3 3 状态转换图如下: 识别语言为:(a | b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 解析: 根据1的NFA构造DFA状态转换矩阵如
第八次-非确定的自动机NFA确定化为DFA
提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射
hdu 5648 DZY Loves Math 组合数+深搜(子集法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&j);(1 <= i <= n,1<=j<=m); 至多三组数据,至多两组数据max(n,m) > 2000.至多一组数据max(n,m) > 8000; 很多题解是用递推打表,将数据压缩250倍,即[i][j]:代表[1...250*i][1...250*j],之后零
利用子集构造法实现NFA到DFA的转换
概述 NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当.本次实验采用子集构造法来实现不带空弧的由NFA到DFA的转换. 子集构造法的算法如下: 设NFA为M=(K,Σ,f,S0,Z),则构造相应的DFA M′=(Q,Σ,f′,I0,F)①取I0=S0:②对于状态集Q中任一尚未标记的状态qi={Si1,Si
什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机)
本节知识点是<编译原理>第三章-词法分析,学习参考教材为清华大学出版社<编译原理>第三版: 前情提要: 字母表∑1和∑2的乘积( product): ∑1∑2 ={ab|a ∈∑1, b ∈ ∑2} 例: {0, 1} {a, b} ={0a, 0b, 1a, 1b} 字母表∑的n次幂( power):长度为n的符号串构成的集合 ∑0 ={ ε } ∑n =∑n-1 ∑ , n ≥ 例: {0, 1}3 ={0, 1} {0, 1} {0, 1}={000, 001, 010, 0
自动构造词法分析器的步骤——正规式转换为最小化DFA
正规式-->最小化DFA 1.先把正则式-->NFA(非确定有穷自动机) 涉及一系列分解规则 2.再把NFA通过"子集构造法"-->DFA 通过子集构造法将NFA转化为DFA 将表里的变量名用比较简单的符号代替(最好是在进行构造的时候顺手在草稿纸上标记好,方便后面的工作) 对照上面的表,画出DFA的状态转换图 图中0,1,2,3,4,5都是终态,因为他们的集合里都包含了最初的终态"数字9". 3.再把DFA通过"分割法"进行最小
HAWQ取代传统数仓实践(七)——维度表技术之维度子集
有些需求不需要最细节的数据.例如更想要某个月的销售汇总,而不是某天的数据.再比如相对于全部的销售数据,可能对某些特定状态的数据更感兴趣等.此时事实数据需要关联到特定的维度,这些特定维度包含在从细节维度选择的行中,所以叫维度子集.维度子集比细节维度的数据少,因此更易使用,查询也更快. 有时称细节维度为基本维度,维度子集为子维度,基本维度表与子维度表具有相同的属性或内容,称这样的维度表具有一致性.一致的维度具有一致的维度关键字.一致的属性列名字.一致的属性定义以及一致的属性值.如果属性
dp的刷表法和填表法
dp的刷表法和填表法 参考: 动态规划刷表法 - acmer_xue的博客 - CSDN博客http://blog.csdn.net/qq_30241305/article/details/52198780 一.先简单讲下什么是填表法,什么是刷表法. 填表法 :就是一般的动态规划,当前点的状态,可以直接用状态方程,根据之前点的状态推导出来. 刷表法:由当前点的状态,更新其他点的状态.需要注意:只用当每个状态所依赖的状态对它的影响相互独立. 二.通过例题看刷表 链接:http://exam.upc
自己动手开发编译器(四)利用DFA转换表建立扫描器
上回我们介绍了两种有穷自动机模型——确定性有穷自动机DFA和非确定性有穷自动机,以及从正则表达式经过NFA最终转化为DFA的算法.有些同学表示还是难以理解NFA到底怎么转化为DFA.所以本篇开头时我想再多举一个例子,看看NFA转化为DFA之后到底是什么样.首先我们看下面的NFA,它是从一组词法分析所用的正则表达式转换而来的.这个NFA合并了IF.ID.NUM.error这四个单词的NFA.因此,它的四个接受状态分别代表遇到了四种不同的单词. 用上一篇学到的方法,我们需要求出一个DFA,它的每个状
如何将 不确定的有穷自动机(NFA) 转化为 确定的有穷自动机(DFA) 并将DFA最简化
一.从NFA到DFA的转换 例如下图: DFA的每个状态都是一个由NFA中的状态构成的集合,即NFA状态集合的一个子集 r =aa*bb*cc* 二.从带有ε-边的NFA到DFA的转换 r=0*1*2* 三.子集构造法( subset construction) 输入:NFA N 输出:接收同样语言的DFA D 方法:一开始,ε-closure ( s0 )是Dstates 中的唯一状态,且它未加标记: while(在Dstates中有一个未标记状态T ) { 给T加上标记: for(每
NFA转DFA - json数字识别
json的主页上,提供了number类型的符号识别过程,如下: 图片引用:http://www.json.org/json-zh.html 实际上这张图片表示的是一个状态机,只是状态没有标出来.因为这个状态机上存在ε转换,所以它是一个NFA(不确定有限自动机).ε转换也即不需要输入串就能进行的转换,例如从开始状态到0之前的状态.而我们进行识别的时候,使用DFA(确定有穷自动机)会简单方便得多.所以首先应该将这个NFA转成DFA. 首先把这个NFA规范一下,写成状态与箭头的形式: NFA转DF
NFA转换为等价的DFA
在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也称有限自
热门专题
Vue通过id跳转到商品详情页
pgsql存储过程造千万级数据插到表
tensorflow 物体 计数
idea中如何查看类图
cmake 打包sdl
vim中 粘贴 剪贴板内容命令
java使用pagehelper配置
什么是可打印的Ascii码
C# Process.WaitForExit()与死锁
zabbix编译STMP服务
html &ldquo&rdquo的意思
主窗口ON_WM_MOUSEHWHEEL无响应
带纹理的文字 css
navicat 转储 如何导入
exploit和payload
西门子plc资料百度网盘
sql server 输入单引号
java filter过滤器获取路径
qt 判断鼠标移动距离
亚马逊云 查看剩余流量