一.基本HOG算法 HOG特征最早出现在SIFT算法中,由于其极强的图像特征描述能力,逐渐被人们熟知和广泛运用,其在目标检测方面表现尤为突出. HOG特征提取过程 步骤一:遍历图像每个像素点,以其为中心取8*8像素领域作为网格(block)区域: 步骤二:将网格(block)区域平均分成4个大小相等的细胞单元(cell),每个细胞单元的大小是4*4个像素: 步骤三:计算所有细胞单元(cell)中的每个像素的梯度幅值和梯度方向,梯度算子使用中心算子[1,0,-1]: 其中,H(x,y)为每个像素水