基于我们在线性代数中学习过的知识,我们知道解线性方程组本质上就是Gauss消元,也就是基于增广矩阵A的矩阵初等变换.关于数学层面的内容这里不做过多的介绍,这里的侧重点是从数值计算的角度来看这些常见的问题. 那么基于Gauss消元的算法,我们将会很好理解如下的Matlab代码: for j = 1:n-1 for i = j+1 : n mult = A(i,j)/A(j,j); A(i,:) = A(i,:) – mult*A(j,:); %这里改写成A(i , j:n) = A(i,j:
一.向量.矩阵的表示和使用 format long %小数很多format short %默认4位小数format rat %显示最近的分数format short e %指数格式的数 尾数多少 exp(1) %自然对数的底exp(10) log(x) %x的自然对数 底是e log10(x) %以10为底 asin(pi) atan(pi/3) %反三角函数 向量(vector)一维数值数组.MATLAB 允许你创建列向量和行向量,列向量通过在方 括号内把数值用分号(;)隔开来创建,对元素的
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace zblGauss1 { class Program { static void Main(string[] args) { //double[,] a = { { 8.1, 2.3, -1.5, 6.1 }, { 0.5, -6.23, 0.87,
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace zblGauss1 { class Program { static void Main(string[] args) { double[,] a = { { 8.1, 2.3, -1.5, 6.1 }, { 0.5, -6.23, 0.87, 2