Generate cross-validation indices 生成交叉验证索引 Syntax语法 Indices = crossvalind('Kfold', N, K) %K折交叉验证 [Train, Test] = crossvalind('HoldOut', N, P) % 将原始数据随机分为两组,一组做为训练集,一组做为验证集 [Train, Test] = crossvalind('LeaveMOut', N, M) %留M法交叉验证,默认M为1,留一法交叉验证 [Trai
0.交叉验证 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标. 交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本大于一万条的话,我们一般随机的把数据分
交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始的子集被称为训练集.而其它的子集则被称为验证集或测试集.交叉验证是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize). 我们以分类花的例子来看下: # 加载iris数据集 from sklearn.datasets import load_iris from s