import random as r import pymysql first=('张','王','李','赵','金','艾','单','龚','钱','周','吴','郑','孔','曺','严','华','吕','徐','何') middle=('芳','军','建','明','辉','芬','红','丽','功') last=('明','芳','','民','敏','丽','辰','楷','龙','雪','凡','锋','芝','') name=[] passwd1=(') for i
提高MYSQL百万条数据的查询速度 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0 3.应尽量避免在 where 子句中
原文:http://blog.csdn.net/zhengyiluan/article/details/51671599 处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: se
处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有
我用到的数据库为,mysql数据库5.7版本的 1.首先自己准备好数据库表 其实我在插入1000万条数据的时候遇到了一些问题,现在先来解决他们,一开始我插入100万条数据时候报错,控制台的信息如下: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (4232009 > 4194304). You can change this value on the server by setting the max_al
web开发中,我们经常需要将一个表的数据插入到另外一个表,有时还需要指定导入字段,设置只需要导入目标表中不存在的记录,虽然这些都可以在程序中拆分成简单sql来实现,但是用一个sql的话,会节省大量代码.下面我以mysql数据库为例分情况一一说明: 1.如果2张表的字段一致,并且希望插入全部数据,可以用这种方法: INSERT INTO 目标表 SELECT * FROM 来源表; insert into insertTest select * from insertTest2; 2.如果只希望导