原文链接:关于感受野的总结 论文链接:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 一.感受野 感受野被定义为卷积神经网络特征所能看到输入图像的区域,换句话说特征输出受感受野区域内的像素点的影响.下图展示了一个在输出层达到了7*7感受野的例子: 感受野计算公式为:, 如上例第一个隐层,, 如果存在空洞卷积,公式变为. 感受野计算的问题 上文所述的是理论感受野,而特征的有效感受野(
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准率的算术平均值.即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值.其具体的计算方法有很多种,这里只介绍PASCAL VOC竞赛(voc2010之前)中采用的mAP计算方法,该方法也是yolov3模型采用的评估方法,yolov3项目中如此解释mAP,暂时看不明白可以先跳过,最后再