首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
直接采用bert做语义相似度计算
2024-09-04
用BERT做语义相似度匹配任务:计算相似度的方式
1. 自然地使用[CLS] 2. cosine similairity 3. 长短文本的区别 4. sentence/word embedding 5. siamese network 方式 1. 自然地使用[CLS] BERT可以很好的解决sentence-level的建模问题,它包含叫做Next Sentence Prediction的预训练任务,即成对句子的sentence-level问题.BERT也给出了此类问题的Fine-tuning方案: 这一类问题属于Sentence Pair C
孪生网络(Siamese Network)在句子语义相似度计算中的应用
1,概述 在NLP中孪生网络基本是用来计算句子间的语义相似度的.其结构如下 在计算句子语义相似度的时候,都是以句子对的形式输入到网络中,孪生网络就是定义两个网络结构分别来表征句子对中的句子,然后通过曼哈顿距离,欧式距离,余弦相似度等来度量两个句子之间的空间相似度. 孪生网络又可以分为孪生网络和伪孪生网络,这两者的定义: 孪生网络:两个网络结构相同且共享参数,当两个句子来自统一领域且在结构上有很大的相似度时选择该模型: 伪孪生网络:两个网络结构相同但不共享参数,或者两个网络结构不同,当两个句子结构
NLP 语义相似度计算 整理总结
更新中 最近更新时间: 2019-12-02 16:11:11 写在前面: 本人是喜欢这个方向的学生一枚,写文的目的意在记录自己所学,梳理自己的思路,同时share给在这个方向上一起努力的同学.写得不够专业的地方望批评指正,欢迎感兴趣的同学一起交流进步. 一.背景 二.基本概念 三.语义相似度计算方法 四.参考文献 一.背景 在很多NLP任务中,都涉及到语义相似度的计算,例如: 在搜索场景下(对话系统.问答系统.推理等),query和Doc的语义相似度: feeds场景下Doc和Doc的语义相似
BERT实现QA中的问句语义相似度计算
1. BERT 语义相似度 BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的.模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation. 有一个这样的场景,QA对话系统,
深度学习解决NLP问题:语义相似度计算
在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序. 在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如
DSSM 深度学习解决 NLP 问题:语义相似度计算
https://cloud.tencent.com/developer/article/1005600
3. 文本相似度计算-DSSM算法
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似度的问题. 本文介绍DSSM(Deep Structured Semantic Models)深度学习架构. 2. DSSM原理 DSSM的原理很简单,通过搜索引擎里Q
LSF-SCNN:一种基于 CNN 的短文本表达模型及相似度计算的全新优化模型
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language processing, NLP) 和卷积神经网络(convolutional neural network, CNN)有一定的了解,可以直接看摘要和LSF-SCNN创新与技术实现部分.如果能启发灵感,应用于更多的现实场景中带来效果提升,那才是这篇文章闪光的时刻.如果你没有接触过NLP和CNN,也不在担心,可
java算法(1)---余弦相似度计算字符串相似率
余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网
4. 文本相似度计算-CNN-DSSM算法
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DNN的结构来对数据进行降维度,本文用CNN的结构对数据进行降维. 2. CNN-DSSM CNN-DSSM在DSSM的基础上改进了数据的预处理和深度 2.1 CNN-DSSM架构 CNN-DSSM的架构图如下: 输入:\(Query\)是代表用户输入,\(document\)是数据库中的文档. wor
word2vec词向量训练及中文文本类似度计算
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年> <Word2vec的工作原理及应用探究 · 周练 ·
python 文本相似度计算
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from gensim import corpora,models,similarities import codecs def cut_words(file): with open(file, 'r',encoding="utf-8") as f: text = f.read() words = j
海量数据相似度计算之simhash短文本查找
在前一篇文章 <海量数据相似度计算之simhash和海明距离> 介绍了simhash的原理,大家应该感觉到了算法的魅力.但是随着业务的增长 simhash的数据也会暴增,如果一天100w,10天就1000w了.我们如果插入一条数据就要去比较1000w次的simhash,计算量还是蛮大,普通PC 比较1000w次海明距离需要 300ms ,和5000w数据比较需要1.8 s.看起来相似度计算不是很慢,还在秒级别.给大家算一笔账就知道了: 随着业务增长需要一个小时处理100w次,一个小时为3600
海量数据相似度计算之simhash和海明距离
通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析.分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法.欧式距离.Jaccard相似度.最长公共子串.编辑距离等.这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重.最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复.看起来很简单,我们来做个测试,就拿最简单的
图像相似度计算之哈希值方法OpenCV实现
http://blog.csdn.net/fengbingchun/article/details/42153261 图像相似度计算之哈希值方法OpenCV实现 2014-12-25 21:27 2959人阅读 评论(0) 收藏 举报 分类: OpenCV(72) Image Processing(18) 版权声明:本文为博主原创文章,未经博主允许不得转载. 感知哈希算法(perceptual hash algorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字
win7基于mahout推荐之用户相似度计算
http://www.douban.com/note/319219518/?type=like win7基于mahout推荐之用户相似度计算 2013-12-03 09:19:11 事情回到半年前,我想做关于推荐系统的东西,结果看到了强大的apache mahout,然后各种安装linux,hadoop,apache,mahout,taste,结局是,一个星期的努力,失败....linux实在是hold不住啊,最后放弃了,可是最近计算用户相似度,实在是喜欢mahout 的开源,硬着头皮使用
【codenet】代码相似度计算框架调研 -- 把内容与形式分开
首发于我的gitpages博客 https://helenawang.github.io/2018/10/10/代码相似度计算框架调研 代码相似度计算框架调研 研究现状 代码相似度计算是一个已有40年研究历史的问题了.它的应用范围广泛,主要包括代码抄袭检测[3].软件维护中的相似代码查找等. Whale[1]于1988年首次提出一个代码相似性检测的通用框架和步骤,将检测过程分为以下两个阶段: 代码格式转换 + 相似度确定 后来很多检测方法都参考这一框架,并将检测过程细分为四个部分: 预处理 ->
Python简单实现基于VSM的余弦相似度计算
在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识. 这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识 第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消解 第一步,向量空间模型VSM
Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有词向量空间 SVM 等介绍 http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed-english/Ch27b_ir2-vectorspace-95.pdf 专门介绍向量空间 https://courses.
Spark Mllib里相似度度量(基于余弦相似度计算不同用户之间相似性)(图文详解)
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品: 考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户: 考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度
热门专题
labelsmooth数学
rabbitmq如何处理消费者不ack
java获取某字符串之后的字符
jquery 页面滚动到底部
查看雇员的月薪与佣金之和
Python中空格是可以随便打的吗
爬虫根据列表推导式构造新的url
如何实现rtpserver
util和sql包下的date
/etc/pam.d文件夹
expression 转换微数据类型int
Manjaro字体推荐
queryforobject返回
多线程循环打印abc
app 安装在userdata分区
为什么开启麦克风之后dolby自动关闭
windows c 遍历文件夹中的文件名
为什么RNN容易梯度爆炸
java中文占用字节
uniapp滑动页面切换标签