首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
石子合并【基础算法 动态规划】——高级
2024-11-02
zjnu1181 石子合并【基础算法・动态规划】——高级
Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合并前对调一次相邻两堆石子的次序. 计算在上述条件下将n堆石子合并成一堆的最小得分. Input 输入数据共有二行,其中,第1行是石子堆数n≤100: 第2行是顺序排列的各堆石子数(≤20),每两个数之间用空格分隔. Output 输出合并的最小得分. Sample Input 3 2 5 1 Samp
BZOJ-3229 石子合并 GarsiaWachs算法
经典DP?稳T 3229: [Sdoi2008]石子合并 Time Limit: 3 Sec Memory Limit: 128 MB Submit: 426 Solved: 202 [Submit][Status][Discuss] Description 在一个操场上摆放着一排N堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将N堆石子合并成一堆的最小得分. Input 第一行是一个数N. 以下N
洛谷 P5569 [SDOI2008]石子合并 GarsiaWachs算法
石子合并终极通用版 #include<bits/stdc++.h> using namespace std ; ]; int n,t,ans; void combine(int k) { ];//合并k和k-1堆 ans+=tem; ; i++) stone[i]=stone[i+]; //k以后的往前移位 t--; int j; ; j>&&stone[j-]<tem; j--) stone[j]=stone[j-]; //k-1以后的往后移位,找大于tem的位置
POJ 1738 石子合并2 GarsiaWachs算法
石子合并(GarsiaWachs算法) 只能用该算法过!!! 详解看代码 //#pragma comment(linker, "/STACK:167772160")//手动扩栈~~~~hdu 用c++交 #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<queue> #include<stack> #in
CH5301 石子合并【区间dp】
5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为 1 3 5 2 我们可以先合并1.2堆,代价为4,得到4 5 2 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为
【BZOJ 3229】 3229: [Sdoi2008]石子合并 (GarsiaWachs算法)
3229: [Sdoi2008]石子合并 Description 在一个操场上摆放着一排N堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将N堆石子合并成一堆的最小得分. Input 第一行是一个数N. 以下N行每行一个数A,表示石子数目. Output 共一个数,即N堆石子合并成一堆的最小得分. Sample Input 4 1 1 1 1 Sample Output 8 HINT 对于 100%
石子合并(直线版+环形版)&(朴素写法+四边形优化+GarsiaWachs算法)
石子合并-直线版 (点击此处查看题目) 朴素写法 最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下: ; i < n; i++) { ; j + i <= n; j++) { int e = j + i; dp[j][e] = inf; <= e; k++) { dp[j][e] = min(dp[j][e], dp[j][k] + dp[k + ][e] + sum[e] - sum[j - ]); }
PHP基础算法
1.首先来画个菱形玩玩,很多人学C时在书上都画过,咱们用PHP画下,画了一半. 思路:多少行for一次,然后在里面空格和星号for一次. <?php for($i=0;$i<=3;$i++){ for($j=0;$j<=3-$i;$j++){ echo ' '; } for($k=0;$k<=2*$i;$k++){ echo '*'; } echo '<br/>'; } 2.冒泡排序,C里基础算法,从小到大对一组数排序. 思路:这题从小到大,第一轮排最小,第二轮排第二小
BZOJ 3229: [Sdoi2008]石子合并
3229: [Sdoi2008]石子合并 时间限制: 3 Sec 内存限制: 128 MB提交: 497 解决: 240[提交][][] 题目描述 在一个操场上摆放着一排N堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将N堆石子合并成一堆的最小得分. 输入 第一行是一个数N. 以下N行每行一个数A,表示石子数目. 输出 共一个数,即N堆石子合并成一堆的最小得分. 样例输入 4 1 1
石子合并(四边形不等式优化dp) POJ1160
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1: 如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2: 若f满足四边形不等式,则决策s满足 s[i
Codevs_2102_石子归并2_(环状动态规划)
描述 http://codevs.cn/problem/2102/ 2102 石子归并 2 时间限制: 10 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题目描述 Description 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入描述 Input Description 数据的第1
洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式 输入格式: 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式: 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 输入样例#1: 复制 4 4 5 9 4 输出样例#1: 复制 43 54
ny737 石子合并(一) 总结合并石子问题
描述: 在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序地合并成一堆. 规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分. 开始以为通过贪心算法可能很快解决问题,可是是行不通的. 首先我们可以把这么堆石子看成一列 我们假如5堆的石子,其中石子数分别为7,6,5,7,100 •按照贪心法,合并的过程如下: 每次合并得分 第一次合并 7 6 5 7
DP石子合并问题
转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735 [石子合并] 在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分. [输入文件] 包含两行,第1 行是正整数n(1<=n<=100),表示有n堆石子. 第2行有n个数,分别表示每堆石子的个数.
四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 求出将n堆石子合并成一堆的最小得分和最大得分以及相应的合并方案. 设m[i,j]表示合并d[i..j]所得到的最小得分. 状态转移方程: 总的时间复杂度为O(n3). [优化方案] 四边形不等式: m[i,j]满足四边形不等式 令s[i,j]=max{k | m[
luogu P1880 石子合并
题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式 输入格式: 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式: 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 输入样例#1: 4 4 5 9 4 输出样例#1: 43 54 区间动态规
NOI1995 石子合并 [Luogu P1880]
一道区间dp的模板题,这里主要记一下dp时环形数据的处理. 简略版:方法一:枚举分开的位置,将圈化为链,因此要做n次. 方法二:将链重复两次,即做一个2n-1长度的链,其中第i(i<=n)堆石子与i+n堆相同. 对整个长链dp后,枚举(1, n), (2, n+1) ... (n, 2n-1),取最值即可. 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石
P1880 [NOI1995]石子合并[环形DP]
题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分 输入输出格式 输入格式: 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式: 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 输入样例#1: 4 4 5 9 4 输出样例#1: 43 5
区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合并的次数为阶段,以区间的左端点 i 为状态,它的值取决于第 i 个元素和第 j 个元素断开的位置 k,即 f [ i ][ k ] + f [ k+1 ][ j ]的值.这一类型的动态规划,阶段特征非常明显,求最优值时需要预先设置阶段内的区间统计值,还要以动态规划的起始位置来判断. 区间类动态规划
【洛谷】P1880 石子合并
P1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式 输入格式: 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式: 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 这是一道区间dp十分经典的模板题,让我们揣测一下,前
热门专题
vue filters 中使用 data
selenium打开浏览器后关闭浏览器代码报错
linux将文档中的斜杠全替换为下划线
服务器NAVMESH数据
jupyter 删除spark
spring前置增强
检查数据库一致性的语句
lua 里面怎么弹出提示框
posgresql 根据查询条件导出
rancher CIS扫描怎么用什么原理
iOS使用 ldap
jqGrid setColProp 不能多次设置
react native热更新流程
qt ip地址正则表达式
linkedhashset获取第一个元素
转成csv数据四舍五入了
echarts legend太多和饼图重叠
oracle查询字段包含中文
QVector<quint64>用法
在模块 test 中找不到或无法加载主类