在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 需要用到的库有tensorflow和numpy,其中tensorflow其实版本>=2.0.0就行 import tensorflow as tf import n
在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! Part 1:矩法估计 矩法估计的重点就在于"矩"字,我们知道矩是概率分布的一种数字特征,可以分为原点矩和中心矩两种.对于随机变量\(X\)而言,其\(k\)阶原点矩和\(k\)阶中心矩为 \[a_k=\mathbb