首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
精通数据科学--从线性回归到深度学习/深度学习
2024-08-21
学习《精通数据科学从线性回归到深度学习》PDF+代码分析
数据科学内容广泛,涉及到统计分析.机器学习以及计算机科学三方面的知识和技能.学习数据科学,推荐学习<精通数据科学从线性回归到深度学习>. 针对技术书籍,最好的阅读方法是对照每一章的示例代码,动手实现所讨论的模型.这样会极大加深自己对模型的理解和实践能力,否则就会像读小说一样,阅读时感觉不错,但实际使用时就无从下手了.配套代码则兼容Python 3和Windows系统. 学习参考: <精通数据科学从线性回归到深度学习>PDF,432页,带书签目录,文字可以复制.配套源代码.作者:唐亘
译:Dataiku 白皮书之《在银行和保险行业应用数据科学》
原文链接:Data Science For Banking & Insurance 如果不能正常访问,请点击备份获取. 在银行和保险行业应用数据科学 互联网巨头和金融技术创业时代的求生和发展 介绍 在数个世纪的进程中,银行和保险行业开发出的程序.产品和基础设施,塑造了整个人类的经济史. 但是现在,他们正面临着消亡的威胁,而挑战者们出现在世界舞台上只是几十年的事,甚至其中几个就出现在短短几年前.尽管如此,却正是这些后来者正在重新制定金融服务的行业规则.这些挑战者包括像 Google.亚马逊.Fac
数据科学VS机器学习
数据科学是一个范围很广的学科.机器学习和统计学都是数据科学的一部分.机器学习中的学习一词表示算法依赖于一些数据(被用作训练集)来调整模型或算法的参数.这包含了许多的技术,比如回归.朴素贝叶斯或监督聚类.但不是所有的技术都适合机器学习.例如有一种统计和数据科学技术就不适合——无监督聚类,该技术是在没有任何先验知识或训练集的情况下检测 cluster 和 cluster 结构,从而帮助分类算法.这种情况需要人来标记 cluster.一些技术是混合的,比如半监督分类.一些模式检测或密度评估技术适合机器
(数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再
(数据科学学习手札40)tensorflow实现LSTM时间序列预测
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二.数据说明及预处理 2.1 数据说明 我们本文使用到的第一个数据来自R中自带的数据集AirPassengers,这个数据集记录了Box & Jenkins航空公司1949-1960年共144个观测值(对应每个月的国际航线乘
学习《数据科学入门》中文PDF+英文PDF+源代码
数据科学是一个蓬勃发展.前途无限的行业,有人将数据科学家称为"21世纪头号性感职业".本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识--数学和统计学.作者选择了功能强大.简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好.简洁易读的实现范例. 学习后可以: 学到一堂Python速成课: 学习线性代数.统计和概率论的基本方法,了解它们是怎样应用在数据科学中的: 掌握如何收集.探索.清理.转换和操作数据: 深入理解
R学习:《机器学习与数据科学基于R的统计学习方法》中文PDF+代码
当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家提供一些在统计学习领域会用到的工具和技巧,涉及数据连接.数据处理.探索性数据分析.监督机器学习.非监督机器学习和模 型评估.选用的是R统计环境,所有代码示例都是用R语言编写的,涉及众多流行的R包和数据集. 适合数据科学家.数据分析师.软件开发者以及需要了解数据科学和机器学习方法的科研人员阅读参考. 学习参考:
学习《Python数据科学手册》高清中文PDF+高清英文PDF+代码
如果有一定的数据分析与机器学习理论与实践基础,<Python数据科学手册>这本书是绝佳选择. 是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.很友好实用,结构很清晰.但不适合数据分析的入门的学习人员,尤其matplotlib与机器学习部分,虽点到为止切到要害,但没有一定的基础,很难通顺的走完每个章节,每个小节.而且不是查查文档,看看资料就能解决的. 中文版PDF,474页,带目录和书签,文字能够复制粘贴:附源代码. 英文版PDF,548页,带目录和书签,文字能够复制粘贴.
零基础使用Swift学习数据科学
概述 Swift正迅速成为数据科学中最强大.最有效的语言之一 Swift与Python非常相似,所以你会发现2种语言的转换非常平滑 我们将介绍Swift的基础知识,并学习如何使用该语言构建你的第一个数据科学模型 介绍 Python被广泛认为是数据科学中最好.最有效的语言.近年来我遇到的大多数调查都将Python列为这个领域的领导者. 但事实是数据科学是一个广阔并且不断发展的领域.我们用来构建数据科学模型的语言也会随之发展.还记得R是什么时候的流行语言吗?它很快就被Python超越了.Julia语
ApacheCN 编程/大数据/数据科学/人工智能学习资源 2019.12
公告 我们的所有非技术内容和活动,从现在开始会使用 iBooker 这个名字. "开源互助联盟"已终止,我们对此表示抱歉和遗憾.除非特地邀请,我们不再推广他人的任何项目. 公众号自动回复已更新,添加了"轻小说/知识星球"关键词. 我们近期将所有内容备份到 Gitee,欢迎访问 Gitee@ApacheCN. 欢迎大家在我们平台上投放广告.如果你希望在我们的专栏.文档或邮件中投放广告,请准备好各种尺寸的图片和专属链接,联系咸鱼(1034616238). 为了能够将开源
布客·ApacheCN 编程/大数据/数据科学/人工智能学习资源 2020.2
特约赞助商 公告 我们愿意普及区块链技术,但前提是互利互惠.我们有大量技术类学习资源,也有大量的人需要这些资源.如果能借助区块链技术存储和分发,我们就能将它们普及给我们的受众. 我们正在招募项目负责人,完成三次贡献可以申请,请联系片刻(529815144).几十个项目等你来申请和参与,不装逼的朋友,我们都不想认识. BiliDriveEx 修复完成,接下来我们会多适配几个图床. "开源互助联盟"已终止,我们对此表示抱歉和遗憾.除非特地邀请,我们不再推广他人的任何项目. 我们接受&quo
布客·ApacheCN 编程/大数据/数据科学/人工智能学习资源 2020.1
公告 我们正在招募项目负责人,完成三次贡献可以申请,请联系片刻(529815144).几十个项目等你来申请和参与,不装逼的朋友,我们都不想认识. 薅资本主义羊毛的 CDNDrive 计划正式启动! 我们的所有非技术内容和活动,从现在开始会使用 iBooker 这个名字. "开源互助联盟"已终止,我们对此表示抱歉和遗憾.除非特地邀请,我们不再推广他人的任何项目. 欢迎大家在我们平台上投放广告.如果你希望在我们的专栏.文档或邮件中投放广告,请准备好各种尺寸的图片和专属链接,联系咸鱼(103
布客·ApacheCN 编程/大数据/数据科学/人工智能学习资源 2020.4
公告 我们的机器学习群(915394271)正式改名为财务提升群,望悉知. 请关注我们的公众号"ApacheCN",回复"教程/路线/比赛/报告/技术书/课程/轻小说/漫画/新知"来获取更多资源. 我们愿意普及区块链技术,但前提是互利互惠.我们有大量技术类学习资源,也有大量的人需要这些资源.如果能借助区块链技术存储和分发,我们就能将它们普及给我们的受众. 我们正在招募项目负责人,完成三次贡献可以申请,请联系片刻(529815144).几十个项目等你来申请和参与,不装
(数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原生ggplot2图像进行美化,掌握它之后你就可以创作出更具特色和美感的数据可视化作品. 二.基础内容 2.1 安装 不同于常规的R包,ggthemr并没有在CRAN上发布,因此我们需要使用devtools中的install_github()直接从github上安装它,参照github上ggthemr
(数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib.requests这样的请求库来将我们的程序模拟成一个请求网络服务的一端,来直接取得设置好的url地址中朴素的网页内容,再利用BeautifulSoup或pyspider这样的解析库来对获取的网页内容进行解析,在初级篇中我们也只了解到如何爬取静态网页,那是网络爬虫
(数据科学学习手札49)Scala中的模式匹配
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹配的基本格式如下: data match { case ... => 执行语句 case ... => 执行语句 case _ => 执行语句 } 其中,data表示将要进行模式匹配的对象,match是模式匹配的关键字,后面紧跟的{}中包含若干条匹配的方向,且只会匹配其中满足条件的第一条:
(数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集实战 2.1 数据要求 这次我们需要采集的数据是知名旅游网站马蜂窝下重庆区域内所有景点的用户评论数据,如下图所示: 思路是,先获取所有景点的poi ID,即每一个景点主页url地址中的唯一数字: 这一步和(数据科学学习手札33)基于Python的网络数据采集实战(1)中做法类似,即在下述界面: 翻页
(数据科学学习手札42)folium进阶内容介绍
一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些基本示例来展开说明: 二.处理GeoJSON和TopoJSON数据 2.1 GeoJSON数据 GeoJSON是语法规则符合JSON文件的,专用于表示地理信息的一种JSON文件,其在JSON语法的基础上,内部又有着一套固定的语法规则.在folium中我们使用folium.GeoJson()方法来为已
(数据科学学习手札36)tensorflow实现MLP
一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.neural_network中的MLP来实现多层感知机之外,利用tensorflow来实现MLP更加形象,使得使用者对要搭建的神经网络的结构有一个更加清醒的认识,本文就将对tensorflow搭建MLP模型的方法进行一个简单的介绍,并实现MNIST数据集的分类任务: 二.MNIST分类 作为数据挖掘工
(数据科学学习手札32)Python中re模块的详细介绍
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传
热门专题
硬盘bios能看到,进系统看不到
梯度下降解决线性回归
Tomcat服务启动页面乱码
https页面调用http报错
centos7 vnc分辨率
centos7在救援模式下查看ip
nodejs上传附件
springcloud Gateway无法同时配置限流,重试
jmeter查看结果树无返回值
Android string 添加符号
怎么看fMRI的数据是否有错
element中的input限制长度
xilinx tck 上拉 下拉
Elasticsearch什么情况下分片未分配
es5 内置object对象
怎么通过python调用c版darknet
软件开发如何提高系统的稳定性
h5页面如何判断用户避免重复安装App
pandas index 从1开始
esx6.5登录地址