注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不可数的.最常见的一维连续型随机变量有三种:均匀分布,指数分布和正态分布.下面还是主要从概述.定义.主要用途和Python的实现几个方面逐一描述. 以下所有Python代码示例,均默认已经导入上面的这几个包,导入代码如下: import numpy as np from scipy import st
What is WB(white balance)? 人的视觉和神经系统在看到白色物体的时候,基本不受环境的变化而出现严重的错觉.比如阴天,晴天,室内,室外,日光灯,白炽灯等的环境下,人依然会将白纸视作白纸. 但是imagesensor这种电子器件没有心理和神经作用.受制于环境色温的影响.拍出的照片会出现偏色的情况. 色温的定义:一个黑体加热之后,随着温度的升高,黑体会先发出红色,然后越来越亮,变成黄光,在变成白光,直至蓝光,这个温度就是色温. 下面看几组照片: 7700k
使用机器学习排序算法LambdaMART有一段时间了,但一直没有真正弄清楚算法中的所有细节. 学习过程中细读了两篇不错的博文,推荐给大家: 梯度提升树(GBDT)原理小结 徐博From RankNet to LambdaRank to LambdaMART: An Overview 但经过一番搜寻之后发现,目前网上并没有一篇透彻讲解该算法的文章,所以希望这篇文章能够达到此目的. 本文主要参考微软研究院2010年发表的文章From RankNet to LambdaRank to LambdaMA
搜索排序相关的方法,包括 Learning to rank 基本方法 Learning to rank 指标介绍 LambdaMART 模型原理 FTRL 模型原理 Learning to rank 排序学习是推荐.搜索.广告的核心方法.排序结果的好坏很大程度影响用户体验.广告收入等.排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做