信息熵与信息增益(IE, Information Entropy; IG, Information Gain) 信息增益是机器学习中特征选择的关键指标,而学习信息增益前,需要先了解信息熵和条件熵这两个重要概念. 信息熵(信息量) 信息熵的意思就是一个变量i(就是这里的类别)可能的变化越多(只和值的种类多少以及发生概率有关,反而跟变量具体的取值没有任何关系),它携带的信息量就越大(因为是相加累计),这里就是类别变量i的信息熵越大. 系统越是有序,信息熵就越低:反之,一个系统越乱,信息熵就越高.所以