首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
线性时间选择复杂度证明
2024-08-28
【Unsolved】线性时间选择算法的复杂度证明
线性时间选择算法中,最坏情况仍然可以保持O(n). 原因是通过对中位数的中位数的寻找,保证每次分组后,任意一组包含元素的数量不会大于某个值. 普通的Partition最坏情况下,每次只能排除一个元素,所以会造成O(n2)的复杂度. 具体证明可以参考: 王云鹏论文<线性时间选择算法时间复杂度深入研究>
[图解算法]线性时间选择Linear Select——<递归与分治策略>
#include <ctime> #include <iostream> using namespace std; template <class Type> void Swap(Type &x,Type &y); inline int Random(int x, int y); template <class Type> void BubbleSort(Type a[],int p,int r); template <class Ty
关于非旋FHQ Treap的复杂度证明
非旋FHQ Treap复杂度证明(类比快排) a,b都是sort之后的排列(从小到大) 由一个排列a构造一颗BST,由于我们只确定了中序遍历=a,但这显然是不能确定一棵树的形态的. 由一个排列b构造一颗Heap(大根),由于没有重复元素,然后人为钦定左儿子<右儿子,那么他的后序遍历=b. 但是一棵树,如果中序遍历和后续遍历确定了,那么他的形态也就确定了.证明考虑构造一种由中序和后序遍历的序列还原一颗确定的树的算法. 考虑对于一个后序遍历,最后那个数\(u\)一定是根. 那么确定\(u\)在中序遍
算法:线性时间选择(C/C++)
Description 给定线性序集中n个元素和一个整数k,n<=2000000,1<=k<=n,要求找出这n个元素中第k小的数. Input 第一行有两个正整数n,k. 接下来是n个整数(0<=ai<=1e9). Output 输出第k小的数 Sample Input 6 3 1 3 5 2 4 6 Sample Output 3 利用快速排序可以找出第k小的,加上随机函数改进一下: #include <cstdio> #include <cstdlib&
SAM复杂度证明
关于$SAM$的复杂度证明(大部分是对博客的我自己的理解和看法) 这部分是我的回忆,可省略 先回忆一下$SAM$ 我所理解的$SAM$,首先扒一张图 初始串$aabbabd$ 首先发现,下图里的$S->9$的一条直线是$aabbabd$是原串 那么从这里我们就可以看到$endpos$关系了,和$AC$自动机不同的是 发现一些子串结尾是相同的,那么就可以共用一个节点,那么从起点到这个点能表示的所有子串的$endpos$相同,那么显然可以共用这个点,这就是空间上的能省就省 又因为这个$SAM$是为了
Top k问题(线性时间选择算法)
问题描述:给定n个整数,求其中第k小的数. 分析:显然,对所有的数据进行排序,即很容易找到第k小的数.但是排序的时间复杂度较高,很难达到线性时间,哈希排序可以实现,但是需要另外的辅助空间. 这里我提供了一种方法,可以在O(n)线性时间内解决Top k问题.关于时间复杂度的证明,不再解释,读者可以查阅相关资料.具体的算法描述如下: 算法:LinearSelect(S,k) 输入:数组S[1:n]和正整数k,其中1<=k<=n: 输出:S中第k小的元素 1. If n<20 Then
关于 min_25 筛的入门以及复杂度证明
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人感觉套上素数定理证明的复杂度的话应该要把下面的 log 改成 ln ,不过也差不多啦~) 其实 min_25 筛的入门TXC 大佬的 blog 已经写的非常棒了QVQ 所以搬博客的话鉴于博主太懒了就不干了...直接帮 TXC 大佬安利博客完事 这篇博客主要的目的是证明网上大多没有的 min_25 筛
Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)
题意:给一个数 可以写出多少种 连续素数的合 思路:直接线性筛 筛素数 暴力找就行 (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net/nk_test/article/details/46242401 https://blog.csdn.net/qq_40873884/article/details/79124552 https://blog.csdn.net/baoli1008/article/details/50788512
伸展树(Splay)复杂度证明
本文用势能法证明\(Splay\)的均摊复杂度,对\(Splay\)的具体操作不进行讲述. 为了方便本文的描述,定义如下内容: 在文中我们用\(T\)表示一棵完整的\(Splay\),并(不严谨地)用\(|T|\)表示\(T\)这棵\(Splay\)的节点数目. 如无特殊说明,小写英文字母(如\(x\),\(y\),\(z\))在本文中表示\(T\)的一个节点,并(不严谨地)用\(|x|\)表示以节点\(x\)为根的子树的大小,\(x\in T\)表示节点\(x\)在\(T\)中. 一般我们默认
算法导论17:摊还分析学习笔记(KMP复杂度证明)
在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价.这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低.摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能. 摊还分析有三种常用的技术: 聚合分析,它确定$n$个操作的总代价的上界为$T(n)$,所以每个操作的平均代价为$\frac{{T(n)}}{n}$.每个操作都有相同的摊还代价. 核算法:分析每个操作的摊还代价,不同于聚合分析,每种操作的摊还代价是不同的,核算法将序列中较早的操作的余额作为“信用”
KMP算法复杂度证明
引言 KMP算法应该是看了一次又一次,比赛的时候字符串不是我负责,所以学到的东西又还给网上的博客了-- 退役后再翻开看,看到模板,心想这不是\(O(n^2)\)的复杂度吗? 有两个循环也不能看做是\(O(n^2)\)的,这要用到摊还分析. 模板 这里用到的模板是算竞上的 calc_next() Next[1] = 0; for (int i = 2, j = 0; i <= n; ++i) { while (j > 0 && a[i] != a[j + 1]) j = Nex
gcd(a,b) 复杂度证明
(b,a%b) a%b<=min(b,a%b)/2 a>=b时每次至少缩减一半 a<b时下次a>b 所以复杂度最多2log(max(a,b)) 证明:a%b<=min(a,a%b)/2 a>b时 b<=a/2 那么a%b<b<=b<=a/2 a>b时 b>a/2 那么a%b=a-b<=a/2 a<b时 a%b=a 证毕
一些树上dp的复杂度证明
以下均为内网 树上染色 https://www.lydsy.com/JudgeOnline/problem.php?id=4033 可怜与超市 http://hzoj.com/contest/62/problem/5 可以简单的列出状态转移方程. 它的转移过程类似: void dfs(int x) { ;i<p[x].size();++i) dfs(p[x][i]); ; memset(tmp[cur],0x3f,sizeof(tmp[cur])); tmp[cur][][]=tmp[cur][
C++分治策略实现线性时间选择
问题描述: 给定线性序集中n个元素和一个整数k,1≤k≤n,要求找出这n个元素中第k小的元素,即如果将这n个元素依其线性序排列时,排在第k个的元素即为要找到元素. 细节须知:(与之前的随笔相比) (1)设置了对于程序运行次数的手动输入设定 (2)取消了文件的读入,直接生成随机数进行排序查找 (3)扩大了随机数的范围.数组的可申请大小 (4)时间统计精确到了微秒级 (5)运行结束后一次性写入提升了程序稳定性,写入的数据可用于数据分析图表 算法原理: 将n个输入元素划分成⌈n/5⌉个组,每组5个元素
查找第K小的元素(利用中位数线性时间选择)(C)
找任意第k个小的元素 #include <stdio.h> #include <stdlib.h> #include <ctime> #include <iostream> using namespace std; template <class Type> void Swap(Type &x,Type &y); inline int Random(int x, int y); template <class Type>
在线性级别时间内找出无序序列中的第k个元素
在一个无序序列中找出第k个元素,对于k很小或者很大时可以采取特殊的方法,比如用堆排序来实现 .但是对于与序列长度N成正比的k来说,就不是一件容易的事了,可能最容易想到的就是先将无序序列排序再遍历即可找出第k个元素.由于任何基于比较的排序算法不可能用少于Θ(N lgN)次比较来实现将所有元素排序,所以采用排序的方法的时间复杂度是线性对数级别的. 我们可以借鉴快速排序中将序列划分的思想来实现平均情况下线性级别的算法,算法实现如下: public class KthElement { private
【知识总结】线性筛_杜教筛_Min25筛
首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博客可能会无限期咕咕咕 线性筛 这种算法是比较基础的筛法,在入门时就已经学习用它来筛一定范围内的质数了,因此具体算法流程无需赘述.但在筛质数的基础上,这种算法由于其优越性质在处理数论函数时也被广泛应用.这里直接给出筛出小于 \(N\) 的质数的模板. void init() { for (int i
BZOJ-3105: 新Nim游戏 (nim博弈&线性基)
pro: 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样. 如果你先拿,怎样才能保证
Splay和LCT的复杂度分析
\(Splay\)的复杂度分析 不论插入,删除还是访问,我们可以发现它们的复杂度都和\(splay\)操作的复杂度同阶,只是一点常数的区别 我们不妨假设有\(n\)个点的\(splay\),进行了\(m\)次\(splay\)操作 采用势能分析 我们记\(w(x) = \left \lceil \log_2 (size(x)) \right \rceil\),注意以\(2\)为底和上取整 我们定义势能函数为\(\varphi = \sum w(x)\) (记第\(i\)次操作操作完之后,势能为\
Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较
参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径,并且能够检测负圈,复杂度O(VE) SPFA:适用于权值有负值,且没有负圈的图的单源最短路径,论文中的复杂度O(kE),k为每个节点进入Queue的次数,且k一般<=2,但此处的复杂度证明是有问题的,其实SPFA的最坏情况应该是O(VE). Floyd:每对节点之间的最短路径. 先给出结论: (1
热门专题
C#NPLOT说明文件
tqdm用在for循环里
thinkphp 同一服务器 跨数据库连接
硬盘大小 YB之后是什么
datetime-local 12小时和24小时
window 移动所有子文件夹下的txt -csdn
python xpath 兄弟节点
1019 数字黑洞 (20 分
括号序列【基础算法 动态规划】——高级
sap如何出现以前输入记录
css3 获取同胞元素的高度
iconfront边框消除
DOCKER核心组件
windows server證書管理
xadmin-django 选中 是空
cmake安装gmake
jdbc 创建mysql存储过程 if
android 网络请求权限
arduino串口库
Win10无法访问共享文件