前言 TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile).嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具.之前想部署tensorflow模型,需要转换成tflite模型. 实现过程 1.不同模型的调用函数接口稍微有些不同 # Converting a SavedModel to a TensorFlow Lite model. converter = lite.TFLiteConverter.from
在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助.至于为什么转换成HSV模型,因为在机器视觉方面用HSV模型进行图像处理是比较方便的,实现的方法和效果相对于其他模型都较为突出. 接下来是完整步骤: 1.打开一个终端,用vim编辑器新建并打开一个后缀为.py的文件 $ vim a.py 2.在打开的文件里按“a”进入编辑模式,然后输入以下代码 im
1. DataTable转IList public class DataTableToList<T>whereT :new() { ///<summary> ///利用反射将Datatable转换成List模型 ///</summary> ///<param name="dt"></param> ///<returns></returns> public static List<T> Con
本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换成TensorFlow的pb文件 """ # ========================================================== from keras.models import load_model import tensorflow as t