首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
绘制随机数的密度函数和分布函数R语言
2024-11-02
R语言︱分布函数与概率密度+随机数产生
1.常见概率分布 ##正态分布 pnorm(1.96) #P(x<=1.96)时的分布概率 pnorm(1.96,0,1) #上同 pnorm(1.96,lower.tail = F) #P(x>1.96)注意与pnorm的区别 qnorm(0.975) #已知分布概率求x值 dnorm(0) #f(0)概率密度值 rnorm(111) #产生符合正态分布的111个随机数 ##泊松分布 Possion(x,λ) dpois(2,0.9) #等同概率密度 dpois(2.1,0.9) #x一定需
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].
R语言学习笔记(五)绘图(1)
R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令. 本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建. 首先,让我们来看一个简单例子: dose <- c(20, 30, 40, 45, 60) drugA <- c(16,20,27,40,60) plot(dose, drugA) 绘制的图形如下: 我们有必要对上述代码做些说明:首句和第二条语句创建两个向量,第三条语句打开一个图形窗口并生成一幅散点图. 这也许是个极为
[R]关于R语言的绘图函数
1. 首先就是plot(x,y,...) 参数: x: 所绘图形横坐标构成的对象 y: 所绘图形纵坐标构成的对象 type: 指定所绘图形类型 pch: 指定绘制点时使用的符号 cex: 指定符号的大小.cex是一个数值,表示绘图符号相对于默认大小的缩放倍数. 默认大小为1, 1.5表示放大为默认值的1.5倍, 0.5表示缩小为默认值的50%等. cex.axis: 坐标轴刻度文字的缩放倍数. 类似于cex cex.lab: 坐标轴标签(名称)的缩放倍数,类似于cex cex.main: 标题的
R语言中的四类统计分布函数
R语言中提供了四类有关统计分布的函数(密度函数,累计分布函数,分位函数,随机数函数).分别在代表该分布的R函数前加上相应前缀获得(d,p,q,r).如: 1)正态分布的函数是norm,命令dnorm(0)就可以获得正态分布的密度函数在0处的值(0.3989)(默认为标准正态分布). 2)同理,pnorm(0)是0.5就是正态分布的累计密度函数在0处的值. 3)而qnorm(0.5)则得到的是0,即标准正态分布在0.5处的分位数是0(在来个比较常用的:qnorm(0.975)就是那个估计中经常用到
R语言绘制空间热力图
先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始 首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言绘制沈阳地铁线路图
##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stations <- arrange(stations,line,line_id) lin
R语言:绘制知识图谱
知识图谱主要是通过将应用数学,图形学,信息可视化技术,信息科学等学科的理论与方法与计量学引文分析.共现分析等方法结合,利用可视化的图谱形象地展示学科的核心结构.发展历史.前沿领域以及整体知识架构达到多学科融合目的的现代理论. 今天我们借助networkD3包里面的simpleNetwork 函数来绘制一个类似CSDN微信开发的知识图谱,效果图如下: 首先我们先来分析一下这张图,图里面的微信支付——微信支付,小程序——小程序,等这些,它们之间本不需要连线,但这里是为了美观好看,才有这些连线,但实际
r语言之散点图绘制及参数
一个简单的例子: > plot(cars$dist~cars$speed,+ main="车位移与速度的关系",+ xlab="速度",+ ylab="位移",+ xlim=c(0,25),+ ylim=c(0,100), + cex=1, + col="red",+ pch=19) 运行结果如图: 参数如下,具体使用方法见上面示例 main:图形标题 sub:子标题 xlab:x轴标题 ylab:y轴标题 xlim:x
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言绘图:时间序列分析 ggplot2绘制ACF PACF
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = "partial") 方法二 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) 方法三 bacf <- acf(gold[, 2], plot = FALSE) bacfdf <- with(bacf, data.frame
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
R语言编程艺术(4)R对数据、文件、字符串以及图形的处理
本文对应<R语言编程艺术> 第8章:数学运算与模拟: 第10章:输入与输出: 第11章:字符串操作: 第12章:绘图 ========================================================================= 数学运算与模拟 数学函数: 数学函数 说明 exp() 以自然常数e为底的指数函数 log() 自然对数 log10() 以10为底的常用对数 sqrt() 平方根 abs() 绝对值 sin(), cos() 三角函数 min()
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(
【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间
热门专题
vncserver命令
bootstrap优化框架
使用cygwin安装make
手机如何能显示生僻字字
matlab将mat数据转为txt
提供认证授权和计账功能的标准
adb命令跳过谷歌向导
c# 枚举 逻辑运算符
图像二值化matlab代码
trackingmore快递查询系统
sql查询指定日期为条件
sql获取 所有字段表的属性
立即执行函数底层原理
android studio 识别不了真机
listKey和listValue属性
QNX CPU 调度周期
k8s集群外访问StatefulSet应用
go url 文件名
下拉框怎么去重复内容js
C# 创建 datatable 自增