假设一组数据:人员进出刷卡数据表[SwingCard] ID MenID Door 1 1 In 2 1 In 3 1 Out 4 1 In 5 1 Out 6 1 Out 想要变成如下:一进一出为一组横着排放,缺少数据的补null MenID Door1 Door2 1 In null 1 In Out 1 In Out 1 null Out 实现: --重新排序,序号为浮点型,装入临时表#Copy select MenID,Door,Row=(Row_Number() over(order
总结::需要耐心,加思考.做事不思考,那就是白做徒劳!!!!! package com.aini; import java.util.Scanner; //操...为什么数组的大小比较我硬是搞不懂,比较大小依然放在for循环里... //从键盘输入一组数据,并输出最小值 //还有循环结构的括号不知道在哪里结束 public class erte { public static void main(String[] args) { Scanner c = new Scanner(System.in
SELECT * FROM rsl a, (SELECT CODE, max(time_key) time_key FROM rsl GROUP BY CODE ) b WHERE a. CODE = b. CODE AND a.time_key = b.time_key AND a. CODE IN ('HK.00700', 'HK.03888'); table :rsl 然后查询出根据每一种的code 中最新的一组数据
SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,相
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,
转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-fre
TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) --- 由误差导致的真实值和估计值之间的偏差平方和(Sum Of Squares Due To Error) ESS: Explained Sum of Squares (回归平方和) --- 被模型解释的方差(Sum Of Squares Due To Regression) TSS=RSS+ESS R2: Coefficien