tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.Session() a = tf.placeholder("float") b = tf.placeholder("float") c = tf.constant(6.0) d = tf.mul(a, b) y = tf.mul(d, c) print sess.run(
真正掌握一种算法,最实际的方法,完全手写出来. LSTM(Long Short Tem Memory)特殊递归神经网络,神经元保存历史记忆,解决自然语言处理统计方法只能考虑最近n个词语而忽略更久前词语的问题.用途:word representation(embedding)(词语向量).sequence to sequence learning(输入句子预测句子).机器翻译.语音识别等. 100多行原始python代码实现基于LSTM二进制加法器.https://iamtrask.github.
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转载自机器之心:https://www.jiqizhixin.com/articles/2018-11-06-10?from=synced&keyword=transformer 在学习的过程中,将代码及排版整理了一下,方便阅读. "Attention is All You Need"
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利
翻译Pradeep Dasigi的一篇长文 Knowledge-Aware Natural Language Understanding 基于知识感知的自然语言理解 摘要 Natural Language Understanding (NLU) systems need to encode human gener- ated text (or speech) and reason over it at a deep semantic level. Any NLU system typically