1 ARMA时间序列机器特性 下面介绍一种重要的平稳时间序列——ARMA时间序列. ARMA时间序列分为三种: AR模型,auto regressiv model MA模型,moving average model ARMA模型,auto regressive moving average model 可证ARMA时间序列具有遍历性,因此可以通过它的一个样本估计自协方差函数及自相关函数. 2 ARMA.AR.MA模型的基础知识(略) 3 例:随机模拟下列序列,样本容量10000,其中样本符合均值
http://c.biancheng.net/view/1950.html 本节将介绍如何利用 RNN 预测未来的比特币价格. 核心思想是过去观察到的价格时间序列为未来价格提供了一个很好的预估器.给定时间间隔的比特币值通过https://www.coindesk.com/api/的 API 下载,以下是 API 文档的一部分: 经 MIT 授权许可,本节将使用https://github.com/guillaume-chevalier/seq2seq-signal-prediction中的代码.