GMM,即高斯混合模型(Gaussian Mixture Model),简单地讲,就是将多个高斯模型混合起来,作为一个新的模型,这样就可以综合运用多模型的表达能力.EM,指的是均值最大化算法(expectation-maximization),它是一种估计模型参数的策略,在 GMM 这类算法中应用广泛,因此,有时候人们又喜欢把 GMM 这类可以用 EM 算法求解的模型称为 EM 算法家族. 这篇文章会简单提一下 GMM 模型的内容,最主要的,还是讲一下 EM 算法如何应用到 GMM 模型的参数估