支持向量机的目的是寻找一个能讲两类样本正确分类的超平面,很多时候这些样本并不是线性分布的. 由此,可以将原始特征空间映射到更高维的特征空间,使其线性可分.而且,如果原始空间是有限维,即属性数量有限, 那么一定存在一个高维特征空间使样本可分. k(.,.)就是核函数.整理后 定理证明:只要一个对称函数所对应的核矩阵半正定,它就能作为核函数使用. 此外,还可以组合函数得到新的核函数,比如假设K1和K2都是核函数,线性组合:r1K1+r2K2也是核函数,还有: 软间隔: 在分类问题中,我们很难完全将数