首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
谱归一化神经网络为什么泛化能力强
2024-08-30
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助? 作者:知乎用户链接:https://www.zhihu.com/question/326034346/answer/730051338来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 回顾一下围绕normalization的一些工作(由最新到最旧的BatchNorm): 2019,Weight Standardization(没有发表,但是有大佬Alan Yuille加持) Weight
机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y
Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力
AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题.虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大. (2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合.Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践
lecture9-提高模型泛化能力的方法
HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine Learning>. 摘自PRML中22页. 正文: 一.提高泛化方法的概述 在这部分中,将会介绍通过减少(当一个模型的数据表现能力大大的超过训练时提供的数据而产生的)过拟合来提高模型的泛化能力,将会介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过
Gradient Centralization: 简单的梯度中心化,一行代码加速训练并提升泛化能力 | ECCV 2020 Oral
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理 来源:晓飞的算法工程笔记 公众号 论文: Gradient Centralization: A New Optimization Technique for Deep Neural Networks 论文地址:https://arxiv.org/abs/2004.01461 论文代码:https://github.com/Yongho
查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen """ """ 分析n_neighbors的大小对K近邻算法预测精度和泛化能力的影响 """ from sklearn.datasets import load_breast_cancer from sklearn.model
北大博士生提出CAE,下游任务泛化能力优于何恺明MAE
大家好,我是对白. 何恺明时隔两年发一作论文,提出了一种视觉自监督学习新范式-- 用掩蔽自编码器MAE,为视觉大模型开路. 这一次,北大博士生提出一个新方法CAE,在其下游任务中展现的泛化能力超过了MAE. 来看看这是一项什么样的研究? 这是一项什么研究? 自何恺明提出MAE以来,基于MIM,Masked Image Modeling,这一自监督学习表征算法就越来越引发关注. 它的主要思路,就是对输入图像进行分块和随机掩码操作,然后对掩码区域做预测. 预测的目标可以是Token ID(如微软提出
基于echarts 24种数据可视化展示,填充数据就可用,动手能力强的还可以DIY(演示地址+下载地址)
前言 我们先跟随百度百科了解一下什么是"数据可视化 [1]". 数据可视化,是关于数据视觉表现形式的科学技术研究. 其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量. 它是一个处于不断演变之中的概念,其边界在不断地扩大. 主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形.图像处理.计算机视觉以及用户界面,通过表达.建模以及对立体.表面.属性以及动画的显示,对数据加以可视化解释. 与立体建模之类的特殊技术方法相比,数据
【神经网络与深度学习】【计算机视觉】图解YOLO
图解YOLO 晓雷 3 个月前 YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行. YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 Object Detection 的问题转化成一个 Regression 问题). YOLO的主要特点: 速度快,能够达到实时的要求.在 Ti
[AI开发]零数学公式告诉你什么是(卷积)神经网络
大部分介绍神经网络的文章中概念性的东西太多,而且夹杂着很多数学公式,读起来让人头疼,尤其没什么基础的人完全get不到作者想要表达的思想.本篇文章尝试零公式(但有少量数学知识)说清楚什么是神经网络,并且举例来说明神经网络能干什么.另外一些文章喜欢举“根据历史交易数据预测房子价值”或者“根据历史数据来预测未来几天是否下雨”的例子来引入“机器学习/深度学习/神经网络/监督学习”的主题,并介绍他们的作用,这种例子的样本(输入X输出Y)都是数值,数字到数字的映射,简单易懂,但是现实应用中还有很多场景并非如
【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN
【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN
[NLP/Attention]关于attention机制在nlp中的应用总结
原文链接: https://blog.csdn.net/qq_41058526/article/details/80578932 attention 总结 参考:注意力机制(Attention Mechanism)在自然语言处理中的应用 Attention函数的本质可以被描述为一个查询(query)到一系列(键key-值value)对的映射,如下图. 在计算attention时主要分为三步: 第一步是将query和每个key进行相似度计算得到权重,常用的相似度函数有点积,拼接,感知机等: 第二步
【目标检测】YOLO:
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行. YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 O
【DeepLearning】AlexNet
在前文中,我们介绍了LeNet的相关细节,它是由两个卷积层.两个池化层以及两个全链接层组成.卷积都是5*5的模板,stride =1,池化为MAX.整体来说它有三大特点:局部感受野,权值共享和池化.2012年ALex发布了AlexNet,他比LeNet5更深,而且可以学习更复杂的图像高维特征.接下来,我们就将一起学习AlexNet模型. 论文原文: ImageNet Classification with Deep Convolutional Neural Networks 论文翻译:AlexN
搜索系统核心技术概述【1.5w字长文】
前排提示:本文为综述性文章,梳理搜索相关技术,如寻求前沿应用可简读或略过 搜索引擎介绍 搜索引擎(Search Engine),狭义来讲是基于软件技术开发的互联网数据查询系统,用户通过搜索引擎查询所需信息,如日常使用的Baidu.Google等:广义上讲,搜索引擎是信息检索(Information Retrieval,IR)系统的重要组成部分,完整的信息检索系统包含搜索引擎.信息抽取(Information Extraction).信息过滤(Infomation Filtering).信息推荐(
非线性回归支持向量机——MATLAB源码
支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强.大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷--训练结果不稳定.本源码可以用于线性回归.非线性回归.非线性函数拟合.数据建模.预测.分类等多种应用场合.function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)%%% SVMNR.m%
深入浅出理解SVM支持向量机算法
支持向量机是Vapnik等人于1995年首先提出的,它是基于VC维理论和结构风险最小化原则的学习机器.它在解决小样本.非线性和高维模式识别问题中表现出许多特有的优势,并在一定程度上克服了"维数灾难"和"过学习"等传统困难,再加上它具有坚实的理论基础,简单明了的数学模型,使得支持向量机从提出以来受到广泛的关注,并取得了长足的发展 .支持向量机(Support Vector Machine, SVM)本身是一个二元分类算法,是对感知机算法模型的一种扩展,现在的 SV
Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1. bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,
《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 和之间的LeNet还是有着异曲同工之妙.这里涉及到 category 种类多的因素,该网络考虑了多通道卷积操作, 卷积操作也不是 LeNet 的单通道
【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言
热门专题
net3.5镜像下载
nodemon 热更新 总会出现终止批处理
linux 输出重定向 按时清理
array sort 从大到小 Collections
post get put delete方式区别
组件嵌套时created不触发
teamview 一直显示正在连接
recenttask 显示应用
linux rpm套件是什么
input限制最少输入10个字符
winform 窗口 增加滚动条
虚拟机什么命令看几核
android view的加载过程
linux docker安装部署
rocketMQ 延时消息
Android蓝牙耳机通话
python 停止多线程
canvas绘制二维码
实模式和保护模式 uefi
object转换为json对象 java