之前看过一条评论说Bert提出了很好的双向语言模型的预训练以及下游迁移的框架,但是它提出的各种训练方式槽点较多,或多或少都有优化的空间.这一章就训练方案的改良,我们来聊聊RoBERTa和SpanBERT给出的方案,看作者这两篇paper是一个组的作品,所以彼此之间也有一些共同点~ RoBERTa RoBERTa与其说是一个新模型,更像是一个篇炼丹手札( ˘•ω•˘ ).作者针对BERT预训练中的几个超参数进行了测试,给出了更好的方案.相信你一定也在不少paper里都看到过"训练方案参考RoBER
处理SUN397 的代码,将其分为80% 训练数据以及20% 的测试数据 2016-07-27 1 %% Code for Process SUN397 Scene Classification 2 % Just the a part : 24 kinds and 6169 images total 3 % used for train a initial classifier and predict the additional dataset. 4 clc; 5 impath = '/hom
迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法可以参考作者的原始文章,Boosting For Transfer Learning. 1.问题定义 传统的机器学习的模型都是建立在训练数据和测试数据服从相同的数据分布的基础上.典型的比如有监督学习,我们可以在训练数据上面训练得到一个分类器,用于测试数据.但是在许多的情况下,这种同分布的假设并不满足