Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以
---恢复内容开始--- ===================================================== A random variable's possible values might represent the possible outcomes of a yet-to-be-performed experiment, or the possible outcomes of a past experiment whose already-existing va
<机器学习>课程使用Kevin P. Murphy图书<Machine Learning A Probabilistic Perspective>本英语教材,本书从一个独特的数学概率论的角度解释机器学习的所有问题,要较强的数学基础.由于是英文教材.特开一个专题在此记录自己的学习过程和各种问题.以供备忘和举一反三之用. 在解说了机器学习的概述之后.第二章紧接着就開始讲述概率论的知识,通过兴许的学习会发现,这些概率论知识有部分在本科的概率论课程中学习过,可是有非常多其它部分是没有在现有
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20