整合基因组浏览器(IGV)是一种高性能的可视化工具,用来交互式地探索大型综合基因组数据.它支持各种数据类型,包括array-based的和下一代测序的数据和基因注释. IGV这个工具很牛,发了NB: James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Na
复制于:https://www.cnblogs.com/leezx/p/5603481.html 整合基因组浏览器(IGV)是一种高性能的可视化工具,用来交互式地探索大型综合基因组数据.它支持各种数据类型,包括array-based的和下一代测序的数据和基因注释.IGV这个工具很牛,发了NB: James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz,
A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读报告! A survey of best practices for RNA-seq data analysis ,我把它叫做RNA-seq数据分析指南.这篇文章是由佛罗里达大学等单位的研究人员在1月26日发表在Genome Biology上的,该期刊的影响因子有10.8分.这是这篇文章的通讯作者,
转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A survey of best practices for RNA-seq data analysis .由于文章较长和枯燥,小编认为重要的信息,已经加粗加红,可以直接看重要信息.不要问我为啥这么好,请叫我雷锋. 摘要 现在RNA-seq数据使用广泛,但是没有一套流程可以解决所有的问题.我们重点关注RNA-
转录组分析---Hisat2+StringTie+Ballgown使用 (2016-10-10 08:14:45) 转载▼ 标签: 生物信息学 转录组 1.Hisat2建立基因组索引: First, using the python scripts included in the HISAT2 package, extract splice-site and exon information from the gene annotation file: $ extract_splice_
与之对应的是single cell RNA-Seq,后面也会有类似文章. 参考:https://github.com/xuzhougeng/Learn-Bioinformatics/ 作业:RNA-seq基础入门传送门 资料:RNA-seq Data Analysis-A Practical Approach(2015) Bioinformatic Data Skill biostar handbook A survey of best practices for RNA-seq data an
转录组的组装Stingtie和Cufflinks Posted: 十月 18, 2017 Under: Transcriptomics By Kai no Comments 首先这两款软件都是用于基于参考基因组的转录组组装,当然也可用于转录本的定量.前者于2016年的 protocol上发表的转录组流程HISAT, StringTie and Ballgown后被广泛使用,后者则是老牌的RNA分析软件了.在算法上来说Stringtie使用的是流神经网络算法,Cufflinks则是吝啬算法:
在转录组测序(RNA-Seq)中,基因的表达量是我们关注的重点.基因表达量的衡量指标有:RPKM.FPKM.TPM. RPKM:Reads Per Kilobase Million:说实话,这个英文说明真的很费解,其实可以理解为“Reads Per Kilobase Per Million Reads”,即“每一百万条Reads中,对基因的每1000个Base而言,比对到该1000个base的Reads数”,计算公式. FPKM:Fragments per Kilobase Million,F
1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapping will be used to construct a summary of the counts: the count table. 2 .不同情况 in RNA-seq 1)Reference genome sequenceavailable 2)NO reference genome