上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractionally strided convolutions. 根据<A guide to convolution arithmetic for deep learning>的介绍的话,在进行卷积操作的时候我们是可以把卷积操作重写为以下的形式: 这个时候,输出是可以表示为 如果反向操作,输入为y的话,要得
转自https://blog.csdn.net/u012370185/article/details/95238828 通常用外部api进行卷积的时候,会面临mode选择. 这三种mode的不同点:对卷积核移动范围的不同限制. 设 image的大小是7x7(橙色部分),filter的大小是3x3(蓝色部分) 1. full mode full mode:从filter和image刚相交开始做卷积,不足的部分padding 0.filter的运动范围如图所示. 2. same mode same
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值,因此需要增加输入宽度和高度.转置卷积,也称为分步卷积或反卷积,就是为了达到这一目的. from mxnet import np, npx, init from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() 1. Ba
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), zip code可能演算出walkable(可休闲去处),富人比例和zip code也可能决定了学区质量,这些个可住家庭大小,可休闲性,学区质量实际上对于房价预测有着至关重要的影响,但是他们都无法直接从原始数据输入获取,而是进过hidden layer学习抽象得出的特征. loss functio