首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
输出斐波那契数列的第128项
2024-09-05
斐波那契数列中获取第n个数据值
class Fibonacci { /** * Description:迭代方法获取fibonacci第n项数值 * * @param int $n * @return int */ public static function fib_interation($n) { $fib = array(); // 定义fibonacci数组 if ($n < 0) { return 0; } for ($fib[0] = 0, $fib[1] = 1, $i = 2; $i <= $n; $i++)
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。 n<=39
// test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include<string> #include<cctype> #include <vector> #include<exception> #include <initializer_list> using namespace std; class Solution
方法输出C++输出斐波那契数列的几种方法
PS:今天上午,非常郁闷,有很多简单基础的问题搞得我有些迷茫,哎,代码几天不写就忘.目前又不当COO,还是得用心记代码哦! 定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那契数列的前20项为例: 方法一: 比拟标准的做法,是借助第三个变量实现的. #include<iostream> using namespace std; int mai
C++输出斐波那契数列的几种方法
定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那契数列的前20项为例: 方法一: 比较标准的做法,是借助第三个变量实现的. #include<iostream> using namespace std; int main(){ int f1=0,f2=1,t,n=1; cout<<"数列第1个:&quo
JavaScript 实现:输出斐波那契数列
问渠那得清如许,为有源头活水来. 想要保持自己的技术活力,最有效的手段就是通过不断地输入来提供足够的养分.我们也不必刻意追求高深的或者新鲜的知识点,通过对一个基础问题的全方位多维度解析,同样也会收获不小. 题目 有这么一道题目需要我们来解答: 试输出斐波那契数列的前10项,即 1.1.2.3.5.8.13.21.34.55. 分析 有些人看到题目中出现了"斐波那契数列"这个概念后,可能脑袋就蒙圈了,其实大可不必! 对于这道题,可以不用理会这个陌生概念,我们只需要关心后面它给出的数字规律
51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <
1242 斐波那契数列的第N项
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <
e8_4输出菲波拉契数列的前10项
program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i-]; do begin write(a[i],' '); end; readln; end.
python脚本10_打印斐波那契数列的第101项
#打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 a = 1 b = 1 for i in range(2,101): if i == 100: print(a+b) b += a a = b-a
求斐波那契数列的第n项
问题描述:斐波那契数列是这样的一个数列,1,1,2,3,5,8,..,即前两项都是1,后面每一项都是其前面两项的和. 现在要你求出该数列的第n项. 分析:该问题是一个经典的数列问题,相信大家在很多语言的教科书上都碰到过这个练习题目.这里我给大家总结了三种经典解法,并对这三个方法进行了对比. 解法一:递归算法.很多教科书上都用这个题作为函数递归知识点讲解的例题,我们可以将每一个项的求法表达为这样一个式子: f(n)=f(n-1)+f(n-2),f(1)=1,f(2)=1,可以看出,可以采用递归算法
矩阵快速幂--51nod-1242斐波那契数列的第N项
斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. 输入 输入1个数n(1 <= n <= 10^18). 输出 输出F(n) % 1000000009的结果. 输入样例 11 输出
(矩阵快速幂)51NOD 1242斐波那契数列的第N项
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. 输入 输入1个数n(1 <= n <= 10^18). 输出 输出F(n) % 1000000009的结果. 输入样例 11 输出样例 89解
51Nod——T 1242 斐波那契数列的第N项
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求
51nod1242斐波那契数列的第N项 【矩阵快速幂】
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <= n <= 10^18). Output 输出F(n) % 1000000009的结果. Sample Input 11
斐波那契数列的第N项
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 题目: 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.
Python初学者笔记:打印出斐波那契数列的前10项
问题:斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加.特别指出:0不是第一项,而是第零项. 方法:Python2.7.9 a=0 b=
k阶斐波那契数列fibonacci第n项求值
已知K阶斐波那契数列定义为:f0 = 0, f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … 给定阶数k和n的值,求fn的值. 既然是递归数列,那我们就用递归函数来实现,具体代码如下: 大家有其他更好的算法,欢迎留言讨论,共同学习. 关于斐波那契的一个小段子,跟大家分享,说学校食堂的菜就是八大菜系之后的第九大菜系斐波那契菜,哈哈哈. 博客地址:https://www.cnblogs.com
51nod 1242 斐波那契数列的第N项
之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂 前面讲的挺好的 后来看到了 http://blog.csdn.net/flyfish1986/article/details/48014523 相当于 是一个那个东西的k-1次方 而且由于 F(1) = 1 所以直接求k-1次方就可以了 #include<bits/stdc++.h> using nam
Problem R: 求斐波那契数列的前n项值
#include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; x1=; x2=; ) printf("); ) printf("1 1"); ) { printf("%d %d",x1,x2); ;i<=n;i++) { x=x1+x2; printf(" %d",x); x1=x2; x2=
求:斐波那契数列的第n项
def he (n): if n < 3 : return 1 return he(n-1)+he(n-2)print(he(n))
51Nod 1242 斐波那契数列的第N项(矩阵快速幂)
#include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; struct Matrix { LL v[maxn][maxn]; }; //矩阵间的乘法 Matrix matrix_mul(Matrix A, Matrix B){ Matrix ans; ; i < maxn; i++){ ; j < maxn; j++){ ans.v[i][j] = ;
热门专题
怎么从git上拉代码
icmp差错报告报文格式中,除了类型代码检验外
java两个整数四则运算的枚举类
webapi 方法调到了 值是null
vue 日期控件 手机端
LTP 4.0 三元组抽取
idea创建maven项目
h5移动端左滑出现删除按钮
webpack router传参
微信开发者工具POST404
mysql无法连接也无报错
sh里面调用sql语句
多线程调用write效率低
strcmp在VS2022
winform 耗时方法阻塞主线程
cmake 编译gstream
linux getc读取串口
sqlservermanagerstudio sql格式化
loadrunner 11破解工具
idea破解码永久激活码2019