#include<iostream> using namespace std; //不推荐用goto,当然用它更快 //辗转相除法求两数的最大公约数 int gcd(long int a,long int b){ int x=a<b?a:b; //获得较小者,用来做循环的约束值 ;i<x;x++){ //循环 if(a>b){ int r=a%b;//取余数 ){//能否整除判断 return b;//可以便输出 }else{//否则进行下一轮的算法 a=b,b=r; } }
辗转相除法,又称欧几里得算法.两个正整数a和b(a>b),它们的最大公约数等于余数c和较小的数b之间的最大公约数.最小公倍数=两数之积/最大公约数 #include <stdio.h> int get1(int a, int b) { if (a < b) { int c = a; a = b; b = c; } while (a%b != 0) { b = a%b; a = b; } return b; } int get2(int a,int b) { return a*b /
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也
题目:输入两个正整数m和n,求其最大公约数和最小公倍数.分析:用辗转相除法求最大公约数 两个数的最大公约数:设两个数分别为n和m,(n>=m);用定义一个变量i,使用for循环,将i的取值从m一直到1,用i分别去取模于m和n,当两个数被取模的结果都是0时,返回此时变量i的值,此时i的值即为最大公约数 两个数的最小公倍数=两个数之积/最大公约数 import java.util.*; public class Prog6 { public static void main(String
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理: gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码
两个数的最大公约数:不能大于两个数中的最小值,算法口诀:小的给大的,余数给小的,整除返回小的,即最大公约数,(res=max%min)==0? max=min,min=res return min; 两个数的最小公倍数:等于两数之和除以两个数的最大公约数 a*b/(LCM(a,b)); #include <iostream> using namespace std; /*求最大公约数,辗转相除法来求最小公倍数*/ int getLCM(int a, int b) { int max = (a