k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.下面主要叙述k近邻算法,k近邻算法的模型和三个基本要素(距离度量.k值的选择.分类决策规则) k近邻算法 k近邻算法简单.直观:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最近邻的k个实例,这k个实例