首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
进位c怎么送到寄存器
2024-11-03
PIC单片机状态寄存器中的C(进位/借位位标志)
查阅PIC单片机芯片手册,关于进位/借位位的说明为: C:进位/借位位. 1 = 结果的最高位发生了进位 0 = 结果的最高位未发生进位 同时有一条标注:借位的极性是相反的. 通过以上说明,可以将C的分析分为两种情况: 1.加法: 最高位发生了进位:C = 1: 最高位未发生进位:C = 0: 2.减法: 最高位发生了借位:C = 0: 最高位未发生借位:C = 1: 为了加深理解,在MPLAB中写入一段代码,通过观测STATUS寄存器的值来测试以上分析: ;测试SUBWF.ADDWF指令与状态
实现BX的内容加上123 并把和送到寄存器AX
① 一条指令 ] ②两条指令 MOV AX,BX Tips: LEA指令与MOV指令的区别: ① MOV指令是 数据 传送指令-------传送数据 LEA指令是 有效地址 传送指令-------取偏移地址 ② MOV OPRD1 OPRD2 OPRD1: 目的操作数(寄存器,存储器,累加器) OPRD2: 源操作数(寄存器,存储器,累加器,立即数) 例如: MOV DI,BX ;寄存器到寄存器之间传数 1 MOV AL,23H ;将立即数"复制"到寄存器 MOV [
8086 CPU 寄存器简介
转载:http://www.cnblogs.com/BoyXiao/archive/2010/11/20/1882716.html 引子 打算写几篇稍近底层或者说是基础的博文,浅要介绍或者说是回顾一些基础知识, 自然,还是得从最基础的开始,那就从汇编语言开刀吧, 从汇编语言开刀的话,我们必须还先要了解一些其他东西, 像 CPU ,内存这些知识点还是理解深刻一点的比较好, 所以这一篇博文就绕着 80x86 CPU 中寄存器的基础部分下手,至于其他的一些将会在后续的博文中介绍 . 同时在这里说明
80X86寄存器详解<转载>
引子 打算写几篇稍近底层或者说是基础的博文,浅要介绍或者说是回顾一些基础知识, 自然,还是得从最基础的开始,那就从汇编语言开刀吧, 从汇编语言开刀的话,我们必须还先要了解一些其他东西, 像 CPU ,内存这些知识点还是理解深刻一点的比较好, 所以这一篇博文就绕着 80x86 CPU 中寄存器的基础部分下手,至于其他的一些将会在后续的博文中介绍 . 同时在这里说明一下,本篇博文介绍的算是比较详细的了,而且介绍的知识点也是比较多的,所以造成博文长度过长, 如果有兴趣想了解这一块的话,还请自行斟酌
[转帖]8086 CPU 寄存器简介
8086 CPU 寄存器简介 https://www.cnblogs.com/BoyXiao/archive/2010/11/20/1882716.html 哎 没看完 感觉好复杂. 引子 打算写几篇稍近底层或者说是基础的博文,浅要介绍或者说是回顾一些基础知识, 自然,还是得从最基础的开始,那就从汇编语言开刀吧, 从汇编语言开刀的话,我们必须还先要了解一些其他东西, 像 CPU ,内存这些知识点还是理解深刻一点的比较好, 所以这一篇博文就绕着 80x86 CPU 中寄存器的基础部分下手,至于
汇编寄存器(内存访问)基础知识之三---mov指令
1 内存中字的存储 一个字型数据占2个内存单元,内存里面一个内存单元一个字节(8位),高地址单位放高8位,低地址单元放低8位. 注意:0号是地址单元,1是高地址单元(上是低地址,下面是高地址) (1) 2地址单元中存放的 字节型 数据是 12H (2)2地址单元的存放法 字型 数据是 0012H (字型要2个字节) (3) 1地址单元的存放的 字型 数据是 124EH 结论: 任何2个地址连续的内存单元,N号和N+1号,可以看成2个内存单元, 也可以看成一个地址为N的字单元中的高字节单元(n+
X86架构与ARM架构比较(摘录自网络)
引言 CPU是怎样运作的? CPU的运作与人脑的运作差不多.先谈一下人这个系统的工作方式.眼镜.耳朵.舌头.皮肤等等感觉器官接收到"触觉",把信息传给大脑,大脑把信息处理后,把处理结果送给手.脚.嘴等执行器官就可以运动了. 人脑的功能就是从某个感觉器官读取信息,处理信息,然后再把结果送给执行器官. 一个完整的系统与人这个系统差不多,传感器接收数据,再把数据传给CPU(CPU按照一定的时序.协议从内存读数据),CPU读取到数据并处理,把处理结果送给执行机构就行了(实际上CPU就是按照一定
ARM指令学习,王明学learn
ARM指令学习 一.算数和逻辑指令 1— MOV 数据传送指令 2.— MVN 数据取反传送指令 3.— CMP 比较指令 4.— CMN 反值比较指令 5.— TST 位测试指令 6.— TEQ 相等测试指令 7.— ADD 加法指令 8.— ADC 带进位加法指令 9.— SUB 减法指令 10.— SBC 带借位减法指令 11.— RSB 逆向减法指令 12.— RSC 带借位的逆向减法指令 13.— AND 逻辑与指令
学习linux内核时常碰到的汇编指令(1)
转载:http://blog.sina.com.cn/s/blog_4be6adec01007xvg.html 80X86 汇编指令符号大全 +.-.*./∶算术运算符. &∶宏处理操作符.宏扩展时不识别符号和字符串中的形式参数,如果在形式参数前面加上一个& 记号,宏汇编程序就能够用实在参数代替这个形式参数了. $∶地址计数器的值——记录正在被汇编程序翻译的语句地址.每个段均分配一个计数器,段内定义的所有标号和变量的偏移地址就是当前汇编地址计数器的值. ?∶操作数.在数据定义语句中,操作
x86汇编指令详解
80x86指令系统 80x86指令系统,指令按功能可分为以下七个部分. (1) 数据传送指令. (2) 算术运算指令. (3) 逻辑运算指令. (4) 串操作指令. (5) 控制转移指令. (6) 处理器控制指令. (7) 保护方式指令. 3.3.1数据传送指令 数据传送指令包括:通用数据传送指令.地址传送指令.标志寄存器传送指令.符号扩展指令.扩展传送指令等. 一.通用数据传送指令 1传送指令 传送指令是使用最频繁的指令,格式:MOV DEST,SRC 功能:把一个字节,字或双字从源操作数S
linux内核调试指南
linux内核调试指南 一些前言 作者前言 知识从哪里来 为什么撰写本文档 为什么需要汇编级调试 ***第一部分:基础知识*** 总纲:内核世界的陷阱 源码阅读的陷阱 代码调试的陷阱 原理理解的陷阱 建立调试环境 发行版的选择和安装 安装交叉编译工具 bin工具集的使用 qemu的使用 initrd.img的原理与制作 x86虚拟调试环境的建立 arm虚拟调试环境的建立 arm开发板调试环境的建立 gdb基础 基本命令 gdb之gui gdb技巧 gdb宏 汇编基础--X86篇 用户手册 AT&
X86架构与ARM架构比较
引言 CPU是怎样运作的? CPU的运作与人脑的运作差不多.先谈一下人这个系统的工作方式.眼镜.耳朵.舌头.皮肤等等感觉器官接收到“触觉”,把信息传给大脑,大脑把信息处理后,把处理结果送给手.脚.嘴等执行器官就可以运动了. 人脑的功能就是从某个感觉器官读取信息,处理信息,然后再把结果送给执行器官. 一个完整的系统与人这个系统差不多,传感器接收数据,再把数据传给CPU(CPU按照一定的时序.协议从内存读数据),CPU读取到数据并处理,把处理结果送给执行机构就行了(实际上CPU就是按照一定时序.协议
经常使用ARM汇编指令
一面学习,一面总结,一面记录. 以下是整理在网上找到的一些资料,简单整理记录一下,方便以后查阅. ARM处理器的指令集能够分为跳转指令.数据处理指令.程序状态寄存器(PSR)处理指令.载入/存储指令.协处理器指令和异常产生指令6大指令. 一.跳转指令 跳转指令用于实现程序流程的跳转,在ARM程序中有下面两种方法能够实现程序流程的跳转. Ⅰ.使用专门的跳转指令. Ⅱ.直接向程序计数器PC写入跳转地址值.通过向程序计数器PC写入跳转地址值,能够实如今4GB的地址空间中的随意跳转,在跳转之前结合使用M
x86汇编指令具体解释
80x86指令系统 80x86指令系统,指令按功能可分为下面七个部分. (1) 数据传送指令. (2) 算术运算指令. (3) 逻辑运算指令. (4) 串操作指令. (5) 控制转移指令. (6) 处理器控制指令. (7) 保护方式指令. 3.3.1数据传送指令 数据传送指令包含:通用数据传送指令.地址传送指令.标志寄存器传送指令.符号扩展指令.扩展传送指令等. 一.通用数据传送指令 1传送指令 传送指令是使用最频繁的指令,格式:MOV DEST,SRC 功能:把一个字节,字或双字从源操作数S
ARM汇编指令集
一.跳转指令.跳转指令用于实现程序流程的跳转,在ARM程序中有以下两种方法可以实现程序流程的跳转. Ⅰ.使用专门的跳转指令.Ⅱ.直接向程序计数器PC写入跳转地址值. 通过向程序计数器PC写入跳转地址值,可以实现在4GB的地址空间中的任意跳转,在跳转之前结合使用 MOV LR,PC等类似指令,可以保存将来的返回地址值,从而实现在4GB连续的线性地址空间的子程序调用.ARM指令集中的跳转指令可以完成从当前指令向前或向后的32MB的地址空间的跳转,包括以下4条指令: 1.B指令 B指令的格式为: B{
ARM指令集详解
一.跳转指令 B: 跳转指令 BL: 带返回的跳转指令 BLX: 带返回和状态切换的跳转指令 BX: 带状态切换的跳转指令 二.数据处理指令 1.MOV:数据传送指令 MOV{条件}{S} 目的寄存器,源寄存器 MOV指令可完成从另一个寄存器.被移位的寄存器或将将一个立即数加载到目的寄存器.其中S选项决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR中条件标志位的值. 指令示例: MOV R1,R0 ;将寄存器R0的值传送到寄存器R1 MOV PC,R14 ;将寄
3.3 x86指令简介
计算机组成 3 指令系统体系结构 3.3 x86指令简介 x86指令种类繁多,数量庞大.在这一节我们将会学习x86指令的分类,并分析其中最为基础的一部分指令. 通常一个指令系统主要包括这几类指令.运算类指令,比如加.减.乘.除这样的算术运算,以及与.或.非这样的逻辑运算. 还有传送类指令,比如把数据从存储器送到通用寄存器,或者从通用寄存器送到I/O接口等等. 有了这两类指令,计算机就可以从外界获取数据,并在内部完成运算,最后将结果输出到外界. 但是如果你想编制比较复杂的程序,例如像高级语言当中
DOS程序员手册(九)
第14章参考手册概述 本书余下的章节将向读者们介绍BIOS.DOS各种各样API函数和服务,作为一名程 序员,了解和掌握这些知识是很有好处的.在所介绍的参考手册中,每部手册都汇集了大 量的资源.所有的内容都力求给出准确的技术以及当前最新最流行的信息,如果读者发现 书中有不恰当之处,请向我们的Que公司的有关部门反映,对读者所提的每一个问题他 们都会很重视. 以下几章的主要内容是: · BIOS参考手册 · DOS参考手册 . 鼠标参考手册 · EM
Ok6410裸机驱动学习(二)ARM基础知识
1.ARM工作模式 ARM微处理器支持7种工作模式,分别为: l 用户模式(usr):ARM处理器正常的程序执行状态(Linux用户态程序) l 快速中断模式(fiq):用于高速数据传输或通道处理 l 外部中断模式(irq):用于通用的中断处理 l 管理模式(svc):操作系统使用的保护模式(Linux内核) l 中止模式(abt):当数据或指令预取终止时进入该模式,用于虚拟存储及存储保护 l 未定义指令模式(und):当未定义的指令执行时进入该模式,用于支持硬件协处理器的软件仿真
Linux Kernel - Debug Guide (Linux内核调试指南 )
http://blog.csdn.net/blizmax6/article/details/6747601 linux内核调试指南 一些前言 作者前言 知识从哪里来 为什么撰写本文档 为什么需要汇编级调试 ***第一部分:基础知识*** 总纲:内核世界的陷阱 源码阅读的陷阱 代码调试的陷阱 原理理解的陷阱 建立调试环境 发行版的选择和安装 安装交叉编译工具 bin工具集的使用 qemu的使用 initrd.img的原理与制作 x86虚拟调试环境的建立 arm虚拟调试环境的建立 arm开发板调试环
【知识强化】第二章 数据的表示和运算 2.4 算术逻辑单元ALU
从本节开始我们就进入到本章的最后一节内容了,也就是我们算术逻辑单元的它的实现.这部分呢是数字电路的一些知识,所以呢,如果你没有学过数字电路的话,也不要慌张,我会从基础开始给大家补起.那么在计算机当中,运算器承担了执行各种算术和逻辑运算的工作,那么运算器是由什么组成的呢?我们之前也讲过,在第一章的时候.运算器是由算术逻辑单元,累加器,状态寄存器和通用寄存器组成的.所以,运算器当中,最重要的一部分就是我们的算术逻辑单元.所以我们将要讲解算术逻辑单元它的实现原理. 那么我将从这两个方面给大家讲起.首先
热门专题
sh脚本如何命令重启
UWP如何设置WebView支持
input replace 只能输入数字小数点 负号
vc 给word加标题
Arthas获取springcontent
pta7-56 帅到没朋友 (300 分)
PYTHON 导入日期有小数点
CRITICAL_SECTION 内核空间
iptables完整规则
arcgis for javscript 动画
C# imagelist的imagesize超过256
word每页相同位置加图片
无数据输入假定是什么意思
ios framework 运行太慢
wpf datepicker只选择年月
yii2 ActiveRecord 主键不是ID
XTickLabel直方图
java 常量注释 显示常量值
openjdk8windows如何配置
c#小程序encryptedData数据格式