首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
逻辑回归与svm的区别
2024-08-24
逻辑回归(LR)和支持向量机(SVM)的区别和联系
1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和SVM的联系 都是监督的分类算法. 都是线性分类方法 (不考虑核函数时). 都是判别模型. 3. LR和SVM的不同 损失函数的不同,LR是对数损失函数,SVM是hinge损失函数. SVM不能产生概率,LR可以产生概率. SVM自带结构风险最小化,LR则是经验风险最小化. SVM会用核函数而LR一
机器学习之感知器和线性回归、逻辑回归以及SVM的相互对比
线性回归是回归模型 感知器.逻辑回归以及SVM是分类模型 线性回归:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b<0取-1 它的学习策略是最小化误分类点到超平面的距离, 逻辑回归:f(x)=sigmoid(wx+b)取值范围在0-1之间. 感知器和SVM的对比: 它俩都是用于分类的模型,且都以sign符号函数作为分类决策函数.但是感知器只适用于线性可分的数据,而SVM可以通过核函数处理非线性可分的数据.拿感知器和线性可分
线性回归,逻辑回归,神经网络,SVM的总结
目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输出值. 分类的含义: 分类就是预测离散的输出值, 比如男生为1, 女生为0(0/1离散输出问题). 机器学习中往往会有一个假设(hypothesis), 本质上来讲\(h\)代表学习算法的解决方案或函数. \(h\)可以理解为是我们预先选定的规则或者函数的形式,我们需要不停地得到对应的参数. \(h
Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.
机器学习(九)—逻辑回归与SVM区别
逻辑回归详细推导:http://lib.csdn.net/article/machinelearning/35119 面试常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 1.LR和SVM有什么相同点 (1)都是监督分类算法,判别模型: (2)LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题): (3)两个方法都可以增加不同的正则化项,如L1.L2等等.所以在很多实验中,两种算法的结果是很
机器学习-逻辑回归与SVM的联系与区别
(搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类中) 区别: 1.LR 是 参数模型,SVM是非参数模型,(svm中的 linear 和 rbf 是指线性可分和不可分的问题) 2.从目标函数来看,逻辑回归的目标是使得经验风险最小化,采用的是logistical loss,svm则是最大化分类间隔,使用的损失函数是合页损失( hinge损失):当样
感知器、逻辑回归和SVM的求解
这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器到SVM> .<从线性回归到逻辑回归>两篇文章. 感知器: 前面的文章已经讲到,感知器的目标函数如下: $min \ L(w,b)$ 其中,$L(w,b)=-\sum_{i=1}^{n}[y_i*(w*x_i+b)]$ 对于上面这种无约束的最优化问题,一般采用的是梯度下降的办法,但是,考虑到
[吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机. 逻辑回归公式 逻辑回归公式如下图所示, 可以看出逻辑回归公式由两个变量x和\(\theta\)构成,其中x表示输入的数据,而\(\theta\)是可学习的变量,如图中右半部分所示,其图像坐标轴横轴为x.\(h
KNN与SVM对比&SVM与逻辑回归的对比
首先说一下两种学习方式: lazy learning 和 eager learning. 先说 eager learning, 这种学习方式是指在进行某种判断(例如,确定一个点的分类或者回归中确定某个点对应的函数值)之前,先利用训练数据进行训练得到一个目标函数,待需要时就只利用训练好的函数进行决策,这是一种一劳永逸的方法, SVM 就属于这种学习方式: 而 lazy learning 是指只有到了需要决策时才会利用已有数据进行决策,而在这之前不会经历eager learning 所拥有的训练
机器学习之逻辑回归(Logistic)笔记
在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别: 逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数 当hθ(x(i))=θTx(i)时,表示的是线性回归,它的任务是做回归用的. 当时,表示的是逻辑回归,假定模型服从二项分布,使用最大似然函数推导的,它的任务是做分类用的,逻辑回归是一个广义的线性模型,是对数线性模型. 下面就是逻辑回归的推导过程了 首先我们来看看核函数即sigmoid函数的对Z的导数 这个结果在后续的推导过程会用到,这里的Z我们可
Coursera DeepLearning.ai Logistic Regression逻辑回归总结
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回
机器学习:逻辑回归(scikit-learn 中的逻辑回归)
一.基础理解 使用逻辑回归算法训练模型时,为模型引入多项式项,使模型生成不规则的决策边界,对非线性的数据进行分类: 问题:引入多项式项后,模型变的复杂,可能产生过拟合现象: 方案:对模型正则化处理,损失函数添加正则项(αL2),生成新的损失函数,并对新的损失函数进行优化: 优化新的损失函数: 满足了让原来的损失函数尽量的小: 另一方面,对于 L2 正则项(包含参数 θ 值),限制 θ 的大小: 引入了参数 α ,调节新的损失函数中两部分(原损失函数和 L2 正则项)的重要程度:当然也可以引入 α
100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 Day17,Avik-J
深度学习之逻辑回归的实现 -- sigmoid
1 什么是逻辑回归 1.1逻辑回归与线性回归的区别: 线性回归预测的是一个连续的值,不论是单变量还是多变量(比如多层感知器),他都返回的是一个连续的值,放在图中就是条连续的曲线,他常用来表示的数学方法是Y=aX+b: 与之相对的,逻辑回归给出的值并不是连续的,而是 类似于"是" 和 "否" 的回答,这就类似于二元分类的问题. 1.2逻辑回归实现(sigmoid): 在逻辑回归算法中,我们常使用的激活函数是Sigmoid函数,他能够将数据映射到 0 到 1 之间,并且
机器学习(三)—线性回归、逻辑回归、Softmax回归 的区别
1.什么是回归? 是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归 于一个一般的线性模型而言,其目标就是要建立输入变量和输出变量之间的回归模型.该模型是既是参数的线性组合,同时也是输入变量的线性组合. 最小二乘法,代价函数(平方误差代价函数,加1/2是为了方便求导): 这里使用基函数(basis function)对上面的线性模型进行拓展,即:线性回归模型是一组输入变量x的非线性基函数的线性
kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世
机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x) 直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化 不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x) 需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数 假
逻辑回归与神经网络还有Softmax regression的关系与区别
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解 Logistic Regression(逻辑回归)和Neural Networks(神经网络) Logistic Regression:典型的二值分类器,用来
PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man
逻辑回归 vs 决策树 vs 支持向量机(I)
原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到的主要问题之一.在本文中,我们将从众多技术中挑选出三种主要技术展开讨论,逻辑回归(Logistic Regression).决策树(Decision Trees)和支持向量机(Support Vector Machine,SVM). 上面列出的算法都是用来解决分类问题(SVM和DT也被用于回归,但这
热门专题
reactNative 设置宽度自适应
flutter 修改android包名后无法启动
getannotation 返回空
用python写飞机大战素材哪里下载
java 按照 中文数字 排序
ResinDoc任意文件读取
wingdings2字符大全
halcon傅里叶变换
vue根据内容长度调整列宽度
onsuccess怎么破解
activiti7指定配置文件
nodejs 事件机制
贝叶斯网引论pdf 百度云
java检测word域公式
mysql定义变量接收视图
大话2.0.78版LUA脚本引擎
unity 检查按键顺序
MSSQL 多表更新
keil5删除所有注释
excle数据转sql批量插入数据库