首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
逻辑回归 分类 matlab
2024-09-01
matlab-逻辑回归二分类(Logistic Regression)
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214 (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.
Lineage逻辑回归分类算法
Lineage逻辑回归分类算法 线性回归和逻辑回归参考文章: http://blog.csdn.net/viewcode/article/details/8794401 http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html 1.概述 Lineage逻辑回归是一种简单而又效果不错的分类算法 什么是回归:比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能
用Python开始机器学习(7:逻辑回归分类) --好!!
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小
逻辑回归(分类问题)(Logistic Regression、罗杰斯特回归)
逻辑回归:问题只有两项,即{0, 1}.一般而言,回归问题是连续模型,不用在分类问题上,且噪声较大,但如果非要引入,那么采用逻辑回归模型. 对于一般训练集: 参数系统为: 逻辑回归模型为: (sigmoid函数) 参数求解 对于逻辑回归用来分类{0, 1}问题,假设满足伯努利模型: 可以将上式写为一般形式为: 为了得到参数θ,求最大似然估计[2],可以得到: 为了简化问题,采用ln函数,即对数似然,可以得到: 这里为了最大似然估计使参数最大化,有两种方法求解: 采用梯度上升的
stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X
【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 3—多分类逻辑回归和神经网络
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCostFunction 计算代价和梯度.实现 OneVsAll 使用 fmincg 函数进行训练.使用 OneVsAll 里训练好的 theta 对 X 的数据类型进行预测,得到平均准确率. (2)多分类神经网络:两层 theta 权重值在 ex3weights 里已提供.参数不需要调,只需要在 pr
DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内在分布规律.单个样本表示成二维或多维向量,包含一个因变量Y和一个或多个自变量X.回归分析主要研究当自变量变化时,因变量如何变化,数学表示成Y=f(X),其中函数f称为回归函数(regression function).回归分析最终目的是找到最能代表已观测数据的回归函数. 分类:因变量Y为有限离散集,
(数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们都知道可以用回归模型来进行回归任务,但如果要利用回归模型来进行分类该怎么办呢?本文介绍的逻辑回归就基于广义线性模型(generalized linear model),下面我们简单介绍一下广义线性模型: 我们都知道普通线性回归模型的形式: 如果等号右边的输出值与左边y经过某个函数变换后得到的值比较贴
机器学习(1)- 概述&线性回归&逻辑回归&正则化
根据Andrew Ng在斯坦福的<机器学习>视频做笔记,已经通过李航<统计学习方法>获得的知识不赘述,仅列出提纲. 1 初识机器学习 1.1 监督学习(x,y) 分类(输出y是离散值) 回归(输入输出是连续值) e.g.垃圾邮件.乳腺癌肿瘤好坏.是否患有糖尿病 1.2 无监督学习(x) e.g. 新闻事件分类(谷歌新闻).细分市场 2 单变量线性回归 2.1 模型描述 一种可能的表达方式为:\(h_\theta \left( x \right)=\theta_{0} + \thet
tensorflow之逻辑回归模型实现
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本. 首先,加载数据,并划分训练集和测试集: # 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类 cancer = skd.load_breast_cancer() # 将数据集的数据和标签分离 X_data = cancer.data Y
逻辑回归原理介绍及Matlab实现
原文:逻辑回归原理介绍及Matlab实现 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/laobai1015/article/details/78113214 一.逻辑回归基本概念 1. 什么是逻辑回归 逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏. Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类
Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍. 本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合
SparkMLlib学习分类算法之逻辑回归算法
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用
含有分类变量(categorical variable)的逻辑回归(logistic regression)中虚拟变量(哑变量,dummy variable)的理解
版权声明:本文为博主原创文章,博客地址:,欢迎大家相互转载交流. 使用R语言做逻辑回归的时候,当自变量中有分类变量(大于两个)的时候,对于回归模型的结果有一点困惑,搜索相关知识发现不少人也有相同的疑问,通过查阅资料这里给出自己的理解. 首先看一个实例(数据下载自:http://freakonometrics.free.fr/db.txt) > db <- read.table("db.txt",header=TRUE,sep=";")> head(
[Python]数据挖掘(1)、梯度下降求解逻辑回归——考核成绩分类
ps:本博客内容根据唐宇迪的的机器学习经典算法 学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定.为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. 数据
python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on
逻辑回归(logic regression)的分类梯度下降
首先明白一个概念,什么是逻辑回归:所谓回归就是拟合,说明x是连续的:逻辑呢?就是True和False,也就是二分类:逻辑回归即使就是指对于二分类数据的拟合(划分). 那么什么是模型呢?模型其实就是函数.函数是由三部分组成:自变量,因变量以及参数. 此次采用模型是sigmoid函数: sigmoid函数的精妙之处就在于在x=0点出是一个分水岭,x>0y值去1,x<0 y值取0.所以sigmoid函数很像是跃阶函数. z代表什么?则代表分类的数学表达式,是函数的右侧: 那么怎么使用sigmoid阶
CS229笔记:分类与逻辑回归
逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一种新的假设函数: \[ h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}} \] 其中 \[ g(z) = \frac{1}{1 + e^{-z}} \] 被称为sigmoid函数,这个函数的的值域是\((0, 1)\),且
分类和逻辑回归(Classification and logistic regression)
分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件.所以0称之为负类(negative class),1为正类(positive class) 逻辑回归 首先看一个肿瘤是否为恶性肿瘤的分类问题,可能我们一开始想到的是用线性回归的方法来求解,如下图:
斯坦福CS229机器学习课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression
Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不行,因为直线无法将样本正确分类. 1.1 Sigmoid Function 因为 y∈{0,1},我们也希望 hθ(x)∈{0,1}.第一种选择是 logistic函数或S型函数(logistic function/sigmoid function).g(z)值的范围在0-1之间,在z=0时为0.5
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类
热门专题
inline-block上对齐
composer 设置代理
git 删除远程依赖分支
Android Json解析流怎么转换
Alcatraz.xcplugin xcode 打不开
latex论文作者简介
Java stream从集合中获取以另一个集合为条件的元素
windows 批处理 变量初始化命令执行结果
vue如何给watch里面的数据赋值
openstack故障
java细粒度锁key锁id锁 超时释放
@是什么意思python
rpm打patch实例
oracle 11g 局域网访问
@EnableJpaRepositories 手动声明
删除字符串a中包含的字符串b
WooCommerce 产品页面 相册展示数量在哪里修改
linux nm 详解
Adobe acrobat完整安装之前向导已中断
tomcat 输入url和端口会自动跳转到https