逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logistic Regression The data 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np import matplotlib.pyplot as plt import scipy.optimize as op #S函数 def sigmoid(z): g = 1/(1+np.exp(-z)) return g #cost计算函数 def costFunction(theta, X, y): t
#-*- coding: utf-8 -*- #逻辑回归 自动建模 import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression as LR from sklearn.linear_model import RandomizedLogisticRegression as RLR #参数初始化 filename = '../data/bankloan.xls' data = pd
sklearn使用方法,包括从制作数据集,拆分数据集,调用模型,保存加载模型,分析结果,可视化结果 1 import pandas as pd 2 import numpy as np 3 from sklearn.model_selection import train_test_split #训练测试集拆分 4 from sklearn.linear_model import LogisticRegression #逻辑回归模型 5 import matplotlib.pyplot as p