首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
遗传算法 二进制交叉
2024-11-09
遗传算法,实数编码的交叉操作之SBX(模拟二进制交叉)
本文主要介绍遗传算法(实数编码)的交叉操作中的SBX,模拟二进制交叉. 首先,给出个人用python2.7实现的代码,具体模块已上传到: https://github.com/guojun007/sbx_cross #!/usr/bin/env python #encoding:UTF-8 import numpy as np import random """ SBX 模拟二进制交叉 输入: population 种群矩阵 alfa 交叉概率 numRangeList 决策
标准遗传算法(实数编码 python实现)模拟二进制交叉SBX 多项式变异
代码地址: https://github.com/guojun007/real_sga 本部分是采用实数编码的标准遗传算法,整体流程与上一篇二进制编码的基本一致, 主要区别在于本部分的交叉操作为模拟二进制交叉,即SBX , 变异操作 为 多项式变异. real_sga/crossover/crossover.py #实数编码,SBX交叉 def crossover(population, pcross_real, V, minRealVal, maxRealVal, eta_c): for i
SBX(Simulated binary crossover)模拟二进制交叉算子和DE(differential evolution)差分进化算子
一起来学演化计算-SBX(Simulated binary crossover)模拟二进制交叉算子和DE(differential evolution)差分进化算子 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [1] https://blog.csdn.net/qq_36347331/article/details/96351162 [2] http://www.it1352.com/994287.html [3] https://www.egr.msu.edu/~kdeb
多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块. 这里,首先提一下,遗传算法的 交叉操作.变异操作都是需要设定概率的, 即交叉概率和变异概率. 假设种群个体 大小为 popsize , 那么交叉操作需要进行 popsize/2 次 , 变异操作需要进行 popsize 次, 其中每次操作的时候都需要随机生成一个随机数来与给定的概率进行判断,若小于给定的概率则继续执行否则退出该操作. 如果继
优化算法系列-遗传算法(3)——NSGAII学习网址
JMetal https://www.cnblogs.com/denggaoshan/p/6306640.html https://www.cnblogs.com/denggaoshan/p/6308597.html https://jmetal.github.io/jMetal/https://github.com/jMetal https://sourceforge.net/projects/jmetal/files/jmetal4.5/jmetal4.5.2.jar/download 机器
超详细的遗传算法(Genetic Algorithm)解析
https://blog.csdn.net/u010451580/article/details/51178225 https://www.jianshu.com/p/c82f09adee8f 00 目录 遗传算法定义 生物学术语 问题导入 大体实现 具体细节 代码实现 01 什么是遗传算法? 1.1 遗传算法的科学定义 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法. 其主要
【智能算法】超详细的遗传算法(Genetic Algorithm)解析和TSP求解代码详解
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 00 目录 遗传算法定义 生物学术语 问题导入 大体实现 具体细节 代码实现 01 什么是遗传算法? 1.1 遗传算法的科学定义 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法. 其主要特点是直接对结构对象进
XTU | 人工智能入门复习总结
写在前面 本文严禁转载,只限于学习交流. 课件分享在这里了. 还有人工智能标准化白皮书(2018版)也一并分享了. 绪论 人工智能的定义与发展 定义 一般解释:人工智能就是用 人工的方法在 **机器(计算机)**上实现的智能,或称 机器智能: 人工智能(学科):从学科的角度来说,人工智能是一门研究如何 构造智能机器或智能系统,使之能模拟.延伸.扩展人类智能的学科: 人工智能(能力):从智能能力的角度来说,人工智能是智能机器所执行的通常 与人类智能有关的智能行为,如判断.推理.证明.识别.感知.理
多目标优化算法(一)NSGA-Ⅱ(NSGA2)(转载)
多目标优化算法(一)NSGA-Ⅱ(NSGA2) 本文链接:https://blog.csdn.net/qq_40434430/article/details/82876572多目标优化算法(一)NSGA-Ⅱ(NSGA2)注:没有想到这篇博客竟然有很多人查看,这是我去年写的算法,里面难免会有一些错误,大家可以看看评论区,这里的matlab代码写的不太好,是以C语言思维写的,基本上没有并行,初学者建议可以看看platEMO上的源代码,提前培养好写代码的习惯! 0. 前言这个算法是本人接触科研学习实现
粒子群优化算法(Particle Swarm Optimization)
粒子群算法的思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法.它没有遗传算法的"交叉"(Crossover) 和"变异"(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优.粒子群算法与其他现代优化方法相比的一个明显特色就是所需要调整的参数很少.简单易行,收敛速度快,已成为现代优化方法领域研究的热点. 粒子群算法的基本思想 设想这样一个场景:
【Keras】从两个实际任务掌握图像分类
我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程.今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务. 这两个分类项目就是:交通标志分类和票据分类.交通标志分类在无人驾驶或者与交通相关项目都有应用,而票
PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参
pytorch中文文档-torch.nn常用函数-待添加-明天继续
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:
Matlab调用遗传工具箱复现论文模型求解部分
原文转载自:https://blog.csdn.net/robert_chen1988/article/details/52431594 论文来源: https://www.sciencedirect.com/science/article/pii/S0045782599003898 function [xm,fv]=GAEOQ1 %%初始目标函数与约束条件 %求解变量t, k, 目标函数 f,约束条件 g1 syms t k z; f=100/t+25*(25*t+k*10*sqrt(1+1.
U-net网络实现医学图像分割以及遥感图像分割源代码
U-net网络主要思路是源于FCN,采用全卷积网络,对图像进行逐像素分类,能在图像分割领域达到不错的效果. 因其网络结构类似于U型,所以以此命名,可以由其架构清晰的看出,其构成是由左端的卷积压缩层,以及右端的转置卷积放大层组成: 左右两端之间还有联系,通过灰色箭头所指,右端在进行转置卷积操作的时候,会拼接左端前几次卷积后的结果,这样可以保证得到 更多的信息. 在网络的末端得到两张feature map之后还需要通过softmax函数得到概率图,整个网络输出的是类别数量的特征图,最后得到的是类别的
Faster R-CNN:详解目标检测的实现过程
本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考. Luminoth 实现:https://github.com/tryolabs/luminoth/tree/master/luminoth/models/fasterrcnn 去年,我们决定深入了解 Faster R-CNN,阅读原始论文以及其中引用到的其他论文,现在我们对其工作方式和实现方法有了清晰的理解. 我们最终在 Luminoth
利用 JMetal 实现大规模聚类问题的研究(二) JMetal代码总览
之前完成了导入JMetal到自己的工程这一步. 在开始我们研究的问题之前,我们先对JMetal的源代码一个全局的认识. JMetal很好地利用了面向对象的特性,对所有的优化问题做了高度的抽象,建议有空认真阅读源代码. core 中的类是整个JMetal的基础类,非常重要.比如,所有的算法都继承于的Algorithm类. encodings 是编码的方法,就是启发式算法中的各种解的表示方法. experiments 这里面给出利用JMetal做实验的一些示例代码. metaheuristics里面
『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼
.NetCore下B/S结构 初探基于遗传学算法的中学自动排课走班(二)
分析下染色体基因 这里用 老师 课程 班级 教室 周天 上下晚 课时作为染色体编码我封装了如下类 /// <summary> /// NP 授课事件 由教室.课程.班级 时间片段构成 liyouming add 20180607 /// </summary> public class NP { ///// <summary> ///// 暂时不作为染色体基因处理 ///// </summary> public int Week { get; set; } /
不到 200 行代码,教你如何用 Keras 搭建生成对抗网络(GAN)【转】
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Networks,GAN)最早由 Ian Goodfellow 在 2014 年提出,是目前深度学习领域最具潜力的研究成果之一.它的核心思想是:同时训练两个相互协作.同时又相互竞争的深度神经网络(一个称为生成器 Generator,另一个称为判别器 Discriminator)来处理无监督学习的相关问题.在训
热门专题
linux 指定端口启动redis服务
vector 最后一个
springboot实现RSA加密解密过滤器
mongodb 字符串包含
Navicat for MySQL下载 安装与破解
cookies没加载kisso
mongo 修改字段默认值
c# cmd 路径 中文
httpservlet 内网IP
BC28增加发射功率
add archetype中的catalog填什么
c# winfrom 解决无响应
C# winform修改配置文件,无权限
为什么站点只有本地能访问
Android判断时间大小4
android 系统语言切换流程
ios审核回复,需要重新提交吗
Win server服务器系统哪个版本好
python 转curl
用lua在1-20个数里随机生成10个不重复数字