首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
阈值领域平滑滤波的python
2024-11-05
机器学习进阶-阈值与平滑-图像平滑操作(去噪操作) 1. cv2.blur(均值滤波) 2.cv2.boxfilter(方框滤波) 3. cv2.Guassiannblur(进行高斯滤波) 4. cv2.medianBlur(进行中值滤波)
1.cv2.blur(img, (3, 3)) 进行均值滤波 参数说明:img表示输入的图片, (3, 3) 表示进行均值滤波的方框大小 2. cv2.boxfilter(img, -1, (3, 3), normalize=True) 表示进行方框滤波, 参数说明当normalize=True时,与均值滤波结果相同, normalize=False,表示对加和后的结果不进行平均操作,大于255的使用255表示 3. cv2.Guassianblur(img, (3, 3), 1) 表示进行高
带阈值的平滑l0范数加速稀疏恢复——同名英文论文翻译
原文链接:Thresholded Smoothed l0 Norm for Accelerated Sparse Recovery http://ieeexplore.ieee.org/document/7069222/ 带阈值的平滑l0范数加速稀疏恢复 Han Wang, Qing Guo, Member, IEEE, Gengxin Zhang, Guangxia Li, and Wei Xiang, Senior Member, IEEE 译者:柳如风 摘要:平滑l0范数(Smooth
《在纹线方向上进行平滑滤波,在纹线的垂直方向上进行锐化滤波》 --Gabor增强的具体实践
<在纹线方向上进行平滑滤波,在纹线的垂直方向上进行锐化滤波> --Gabor增强的具体实践 一.问题提出 一般认为"Gabor小波感受野模拟线性滤波器,能对图像进行较好的智能收敛,从而智能增强图像.Gabor小波是智能收敛增强的物理模型" 那么,问题是在实际过程中,如何实现"Gabor小波的智能收敛",达到"
MODIS系列之NDVI(MOD13Q1)七:时间序列S-G滤波之Python
时间序列S-G滤波之Python 根据上上篇博文(MODIS系列之NDVI(MOD13Q1)五:NDVI处理流程)做出的NDVI.我们求NDVI时间序列图,但该NDVI时序图为地表各土地类型综合的NDVI时序图.(详情同样参考该系列五博文的文底) 建议:大家应该也能发现从网上粘贴的代码,大部分在各自实际运行中会出现报错,不能运行.这其中有代码本身的错误,但也不乏运行环境的欠缺.误操作.电脑自身特点等原因.本博客的所有代码都经过实际运行再上传,哪怕比较熟悉的代码,再上传前都会尽可能实际运行.目的便
[整理]Matlab之中心平滑滤波
滑动平均(moving average):在地球物理异常图上,选定某一尺寸的窗口,将窗口内的所有异常值做算术平均,将平均值作为窗口中心点的异常值.按点距或线距移动窗口,重复此平均方法,直到对整幅图完成上述过程,这种过程称为滑动平均. 滑动平均相当于低通滤波,在重力勘探和测井资料处理解释中常用此方法. 如果滑动窗长为n的话,滑动平均就是让数据通过一个n点的FIR滤波器,滤波器抽头系数都是1,这样取滑动平均就是起到序列平滑的作用. Matlab中有多种滑动平均方法,比如filter和tsmovavg
机器学习进阶-阈值与平滑-图像阈值 1. cv2.threshold(进行阈值计算) 2. 参数type cv2.THRESH_BINARY(表示进行二值化阈值计算)
1. ret, dst = cv2.thresh(src, thresh, maxval, type) 参数说明, src表示输入的图片, thresh表示阈值, maxval表示最大值, type表示阈值的类型 2. type的类型 1.cv2.THRESH_BINARY 表示阈值的二值化操作,大于阈值使用maxval表示,小于阈值使用0表示 2. cv2.THRESH_BINARY_INV 表示阈值的二值化翻转操作,大于阈值的使用0表示,小于阈值的使用最大值表示 3. cv2.THRE
CV_图像滤波[转]---python+opencv均值滤波,高斯滤波,中值滤波,双边滤波
1.图像滤波算法(cv2) https://blog.csdn.net/qq_27261889/article/details/80822270 2.
从0到1学Python丨图像平滑方法的两种非线性滤波:中值滤波、双边滤波
摘要:常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波.方框滤波.高斯滤波)和两种非线性滤波(中值滤波.双边滤波),本文将详细讲解两种非线性滤波方法. 本文分享自华为云社区<[Python从零到壹] 五十六.图像增强及运算篇之图像平滑(中值滤波.双边滤波)>,作者:eastmount. 常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波.方框滤波.高斯滤波)和两种非线性滤波(中值滤波.双边滤波),本文将详细讲解两种非线性滤波方法. 一.中值滤波 前面讲述的都是线性平滑滤波,它们的中间
【计算机视觉】OpenCV篇(6) - 平滑图像(卷积/滤波/模糊/降噪)
平滑滤波 平滑滤波是低频增强的空间域滤波技术.空间域滤波技术即不经由傅立叶转换,直接处理影像中的像素,它的目的有两类:一类是模糊:另一类是消除噪音.空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值.邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小.-- 整理自<维基百科>与<百度百科> 滤波 VS 模糊 关于滤波和模糊: 它们都属于卷积,不同滤波方法之间只是卷积核
python数字图像处理(10):图像简单滤波
对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子可用来检测边缘 函数格式为:skimage.filters.sobel(image, mask=None) from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() edges = fil
图像边缘检测——几种图像边缘检测算子的学习及python 实现
本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * saber = cv2.imread("construction.jpg") saber = cv2.cvtColor(saber,cv2.COLOR_BGR2RGB) plt.imshow(saber) plt.axis("off") plt.show() 图片如下: 边缘检测是图像处理和计算机视觉的基本问题,边缘检测的目的是标识数
opencv笔记4:模板运算和常见滤波操作
time:2015年10月04日 星期日 00时00分27秒 # opencv笔记4:模板运算和常见滤波操作 这一篇主要是学习模板运算,了解各种模板运算的运算过程和分类,理论方面主要参考<图像工程--图像处理>(章毓晋)一书第3章,空域增强:模板操作.同时也有个疑问:此书第四章,频域图像增强,讲了低通滤波和高通滤波,然而这些东西和模板运算中的平滑.锐化操作有什么区别?... 以下是正文: 模板运算 首先我们把所有图像看作矩阵. 模板一般是nxn(n通常是3.5.7.9等很小的奇数)的矩阵.模板
OpenCV学习 3:平滑过度与边缘检测
原创文章,欢迎转载,转载请注明出处 用来记录学习的过程,这个是简单的相关函数的熟悉,内部机制和选择何种选择函数参数才能达到自己的要求还不太清楚,先学者吧..后面会慢慢清楚的. 和前面相比,主要用了三个新的函数cvCreateImage,cvSmooth,cvCanny. cvCreateImage用来创建分配图像空间,创建两个,分别保存平滑处理后的图片,然后将平滑处理后的图片(相当于滤波了)进行边缘检测..代码很简单,opencv很强大,简单的几个函数就完成了如此牛逼的东西.
第三节,使用OpenCV 3处理图像(模糊滤波、边缘检测)
一 不同色彩空间的转换 OpenCV中有数百种关于在不同色彩空间之间转换的方法.当前,在计算机中有三种常用的色彩空间:灰度,BGR以及HSV(Hue,Saturation,Value). 灰度色彩空间是通过去除色彩信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测. BGR,即蓝-绿-红色彩空间,每一个像素点都由一个三元数组来表示,分别代表蓝.绿.红三种颜色.网页开发者可能熟悉另一个与之相似的色彩空间:RGB,他们只是在颜色顺序上不同. HSV,H(Hue)是色调,S(Satur
全局Threshold和动态阈值分割Dyn_Threshold的应用场景
手册里面的particle例子,例子的任务是分析颗粒在液体中.在这个应用程序的主要困难:存在两种类型的对象:大明亮物体和较低的小物体的对比.此外噪音使分割的存在困难:无法使用全局灰度阈值threshold进行分割:所以采用先将大块不需要检测的部分去除掉,再通过灰度动态阈值dyn_threshold分割图像得到想要的内容. 处理图片和结果图片: 以下是代码: read_image (Image, 'particle') *获取图像 dev_display (Image) *显示图像 thres
第一篇 Python图片处理模块PIL(pillow)
本篇包含:一.Image类的属性:1.Format 2.Mode 3.Size 4.Palette 5.Info 二.类的函数:1.New 2.Open 3.Blend 4.Composite 5.Eval 6.Frombuffer 7.Fromstring 8.Merge 三.Image类的方法:1.Convert 2.Copy 3.Crop 4.Draft
opencv-python教程学习系列13-图像平滑
前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像平滑,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 系统:win7_x64; python版本:python3.5.2: opencv版本:opencv3.3.1: 内容安排 1.知识点介绍: 2.测试代码: 具体内容 1.知识点介绍: 本文主要基于cv2包介绍几种常见的平滑滤波方法,比如2D卷积.均值滤波.高斯模糊.中值滤波.双边滤波. 对于图像的平滑与
python skimage图像处理(二)
python skimage图像处理(二) This blog is from: https://www.jianshu.com/p/66e6261f0279 图像简单滤波 对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取.skimage库中通过filters模块进行滤波操作.1.sobel算子sobel算子可用来检测边缘函数格式为: skimage.filters.sobel(image, mask=None) from skimag
OpenCV计算机视觉学习(4)——图像平滑处理(均值滤波,高斯滤波,中值滤波,双边滤波)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice "平滑处理"(smoothing)也称"模糊处理"(bluring),是一项简单且使用频率很高的图像处理方法.平滑处理的用途有很多,最常见的是用来减少图像上的噪点或者失真.在涉及到降低图像分辨率时,平滑处理是非常好用的方法. 图像滤波,就是在尽量保留图像细节特征的条件下对目
OpenCV成长之路(7):图像滤波
滤波实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号.其中像素点灰度值的高低代表信号的强弱. 高频:图像中灰度变化剧烈的点. 低频:图像中平坦的,灰度变化不大的点. 根据图像的高频与低频的特征,我们可以设计相应的高通与低通滤波器,高通滤波可以检测图像中尖锐.变化明显的地方:低通滤波可以让图像变得光滑,滤除图像中的噪声. 下面我们来看一下OpenCV中的一些滤波函数: 一.低通滤波 1,blur函数 这个函数是一个平滑图像的函数,它用一个点邻域内像素的平均灰度值来代替该点的灰度.
热门专题
centos虚拟机IP地址怎么设为dhcp
netty 转发服务器
C# npoi导入的效率
Cloudera Manager 安装 选择存储库
ant design pro新建图 typeScript
echarts结构树
intelliJ 自动联想
selenium定位不到document弹窗
spring boot maven 多环境打war
php注册页面送数据源码
查询 hadoop namenode节点路径
innostwp自定义安装界面
LINE VTY 默认网关
定义struct student 类型变量s1
编写一系列条件测试,将每个测试
怎么判断是不是同量级
pyCharm,如何将两个项目文件合并到一个项目里边
c# mysql备份
macbook pro连接HDMI无法显示
血氧传感器python