随机森林和Extra-Trees 随机森林 先前说了bagging的方法,其中使用的算法都是决策树算法,对于这样的模型,因为具有很多棵树,而且具备了随机性,那么就可以称为随机森林 在sklearn中封装了随机森林的类,可以使用这个类直接创建出一个随机森林,同时sklearn中的随机森林模型的随机性更为复杂,对于决策树来说,都是对每一个节点进行划分,详情看这里 在sklearn中的封装的随机森林默认在每一个节点上,都是在一个随机的特征子集上寻找一个最优的划分,并不是在节点上对所有的特征进行划分,这