1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以上步骤\(m\)步,即获得了\(m\)个分类器: 最后根据这\(m\)个分类器进行投票,决定输入样本属于哪一类. 2. 随机森林 随机森林在Bagging基础上做了修改: 从样本中重复自抽样(Bootstrap)选出\(n\)个样本,定义子样本集为\(D\): 基于样本集\(D\),从所有属性中随机