首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
隐马尔可夫模型和viterbi模型转换
2024-09-05
隐马尔可夫模型及Viterbi算法
隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型主要用于语音识别,自然语言处理,生物信息,模式识别等领域. 引入 某天,你的女神告诉你说,她放假三天,将要去上海游玩,准备去欢乐谷.迪士尼和外滩(不一定三个都会去). 她呢,会选择在这三个地方中的某几个逗留并决定是否购物,而且每天只待在一个地方.根据你对她的了解,知道她去哪个地方,仅取决于她去的上一个地方,且是否购物的概率仅取决
隐马尔可夫(HMM)模型
隐马尔可夫(HMM)模型 隐马尔可夫模型,是一种概率图模型,一种著名的有向图模型,一种判别式模型.主要用于时许数据建模,在语音识别.自然语言处理等领域广泛应用. 概率图模型分为两类,一类:使用有向无环图表示变量间的依赖关系,称为有向图模型或者贝叶斯网:第二类:使用无向图表示变量间的依赖关系,称为无向图模型或者马尔可夫网. 判别式模型:考虑条件分布P(Y, R | O),生成式模型:考虑联合分布P(Y, R, O) HMM三个假设 当前观测值只由当前隐藏状态决定 当前隐藏状态由前一个隐藏状态决定
隐马尔可夫树(HMT模型)
HMT(Hidden Markov Tree)隐马尔可夫树 [论文] 小波变换与HMT模型的图像插值算法-郭昌-中山大学学报(自然科学版)
viterbi维特比算法和隐马尔可夫模型(HMM)
隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENGG 5202 Pattern Recognition课程内容知识,和搜集的资料和自己理解的总结. 1 概述 隐马尔可夫模型(Hidden Markov Model,HMM)是结构最简单的贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模(语音识别.自然语言处理等数据在时域有依赖性的问题). 如果考虑t时刻数据依赖于0到t-1时间段的所有数
隐马尔可夫模型(HMM)及Viterbi算法
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自然语言处理,
隐马尔可夫模型(HMM)及Viterbi算法
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自
ZH奶酪:隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)
网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的草稿纸上写公式.单步跟踪程序,终于还是搞清楚了HMM的原理. HMM学习过程: 1.搜索相关博客: 隐马尔可夫模型[博客](图示比较详细,前部分还可以,后部分公式有点乱):http://www.leexiang.com/hidden-markov-model HMM简介.forward算法和vite
Viterbi算法和隐马尔可夫模型(HMM)算法
隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标
HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.
猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它
隐马尔科夫模型(HMM)及事实上现
马尔科夫模型 马尔科夫模型是单重随机过程,是一个2元组:(S,A). 当中S是状态集合,A是状态转移矩阵. 仅仅用状态转移来描写叙述随机过程. 马尔科夫模型的2个如果 有限历史性如果:t+l时刻系统状态的概率分布仅仅与t时刻的状态有关,与t时刻曾经的状态无关: 齐次性如果:从t时刻到t+l时刻的状态转移与t的值无关. 以天气模型为例 天气变化有3中状态S:{1(阴),2(云),3(晴)} 图片来自网络 则状态转移矩阵A: 这样,仅仅要知道的初始状态概率向量,就能预測接下来每天的天气了. 隐马尔科
隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测
HMM:隐马尔可夫模型HMM
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程,是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型. 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的.这样状态的转换概率便是全部的参数.[马尔科夫模型HMM概述] 而在隐马尔可夫模型中,状态并不是直接可见的
机器学习(九)隐马尔可夫模型HMM
1.隐马尔可夫HMM模型 一个隐马尔可夫模型可以表示为\[\lambda=\{A,B,\pi\}\]具体就不说了,比较基本. 2.HMM模型的三个基本问题 1.概率计算问题:给定\(\lambda\)和观测序列\(\{x_{i}\}\),求\(P(x_{i}| \lambda)\).主要方法是前向计算法或后向计算法 2.学习算法问题:对于给定的一个观察值序列,调整参数λ,使得观察值出现的概率p(σ|λ)最大 a.有隐变量,有监督时:HMM b.有隐变量,无监督:Baum-Welch c.无隐变量
HMM隐马尔科夫算法(Hidden Markov Algorithm)初探
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为
机器学习之隐马尔科夫模型HMM(六)
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小,然而在图像识别等领域HMM依然起着重要的作用. 引言 隐马尔科夫模型是马尔科夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测
隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads133/doc/fileformat/568756/HMM-DL.pdf本文讲述了 HMM原理,方法,典型应用 http://www.cnblogs.com/tsingke/p/3923169.html HMM(隐马尔科夫模型)基本原理及其实现 http://wenku.baidu.com/lin
机器学习-HMM隐马尔可夫模型-笔记
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程. 3)隐马尔科夫模型随机生成的状态随机序列,称为状态序列:每个状态生成一个观测,由此产生的观测随机序列,称为观测序列.序列的每个位置可看做是一个时刻. 隐马尔科夫模型的贝叶斯网络 由于Z1,Z2,...
隐马尔科夫模型python实现简单拼音输入法
在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此训练得出隐马尔科夫模型,用维特比算法实现了一个简单的拼音输入法.githuh地址:https://github.com/LiuRoy/Pinyin_Demo 原理简介 隐马尔科夫模型 抄一段网上的定义: 隐马尔可夫模型 (Hidden Markov Model) 是一种统计模型,用来描述一个含有隐含
一文搞懂HMM(隐马尔可夫模型)
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中
热门专题
centos tar压缩目录
winform clickonce 无法显示桌面快捷方式
centosjava程序自动关闭
v4 bootcss radio 选中展示DIV
k8s 配置文件挂载
IIs X-Forwarded-For 启用
rider Resources.resx添加资源
whoosh creat_in 报错
mssql update 防锁表
服务器装2008r2系统得多久
sqlserver只取小数点后面两位
nvm use 不起作用
maven多个启动类如何打包
Chromeheadless截图不完整
torch.mul 与 np.matmul
python time模块格式化字符串 GMT
c# RestTemplate属于哪个命名空间
serlvet上传无权限创建文件夹
yolo 目标检测 pascal 性能
c#窗体改图chart属性