Deep Learning论文笔记之(三)单层非监督学习网络分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the original Machine Learning work flow 2.How to compare different models developed using Unsupervised Learning for their relative strengths and relative
1 Why? Reason1 Knowledge Discovery (about human beings limitaitons) Reason2 Cause of Dimensionality (维度灾难) (about ML algorithm itself) 所需的数据量会根据你所拥有的特征数量以指数速度增长 2 NP-Hard Problem arbitrarily choose m features from n features (m≤n),don't know what m t
@(131 - Machine Learning | 机器学习) 1 Feature Scaling transforms features to have range [0,1] according to the formula $x' = \frac{x-x_{min}}{x_{max}-x_{min}} $ 1.1 Sklearn - MinMaxScaler from sklearn.preprocessing import MinMaxScaler import numpy weigh
Supervised Learning Unsupervised Learning Reinforced Learning Goal: How to apply these methods How to evaluate each methods What is Machine Learning? 1.computational statistics 2.computational artifacts(人工制品) that learn over time based on experience
Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN -TENCE E MBEDDINGSSanjeev Arora, Yingyu Liang, Tengyu MaPrinceton University{arora,yingyul,tengyu}@cs.princeton.eduA BSTRACTThe success of neural net
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter learning_rate