首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
AcWing 1296. 聪明的燕姿
2024-08-10
AcWing1296. 聪明的燕姿
聪明的燕姿 解题思路: 首先我们肯定要用到约数之和定理 但是有个问题就是要怎么用 根据经验得知,约数最多也就六七个左右,不然直接就超了s的范围.所以我们考虑用爆搜来做 但是用爆搜的话还是要优化一下思路和用什么顺序去搜索. 顺序: 按照p和α的顺序来枚举 一旦s%这个当前的乘积==0(dfs的精髓) 那才能跳到下一层循环因为这样才符合约数和定理 dfs的精髓:当前条件满足,然后递归到下一层.到最后一层的时候又满足条件.然后跳出递归 可能要想一些剪枝: 当s等于1+p的时候,直接就得到一个答案.这样
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁.可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字S,那么自己等的人手上的号码牌数字的所有正约数之和必定等于
bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$n$的约数和为$\prod_{i=1}^{m} \sum_{j=0}^{p_{i}}q_{i}^j$ 于是我们可以暴搜枚举每个约数的个数,而且只要枚举到$\sqrt{S}$ tips:注意最后一个数字后不带空格 #include<iostream> #include<cstdio> #
P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 题目描述 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 \(S\),那么自己等的人手上的号码牌数字的所有正约数之和必定等于 \(S
【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过程和这道题一样,这里不再赘述. 代码 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <
[补档][JLOI 2017]聪明的燕姿
[NOI 2008]假面舞会 题目 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁.可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字S,那么自己等的人手上的号码牌数字的所有正约数之和必定等于S 所以燕姿总是拿着号码牌在地铁和人海找数字(喂
聪明的燕姿[JLOI2014]
题目描述 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁.可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字S,那么自己等的人手上的号码牌数字的所有正约数之和必定等于S. 所以燕姿总是拿着号码牌在地铁和人海找数字(喂!这样真的靠谱吗)可是她
[JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S,那么自己等的人手上的号码牌数字的所有正约数之和必定等于 S. 所以燕姿总是拿着号码牌在地铁和人海找数字(喂!这样真的靠谱吗)可是她忙着唱<绿光>,想拜托你写一个程序能够快速地找到所有自己等的人. Solution 分析约数和的式子(1+p1+p1^2+...+p1^a1)*(1+p2+p2^2+.
bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a2*...*pk^ak 则约数和f(n)为(p1^0+p1+p1^2+...+p1^a1)*(p2^0+p2+p2^2+...+p2^a2)*...*(pk^0+pk+pk^2+...+pk^ak) 考虑搜索,使得和为S.至于这个搜索怎么写的,我能说我看不懂吗=_= [代码] #include<cm
bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{i}}$,其中$p_{i}$为质数,那么N的约数和为$\prod\limits_{i=1}^{m}(p_{i}^{0}+p_{i}^{2}+...+p_{i}^{k_{i}})$ 如$36=2^{2}*3^{2}$,那么$36$的约数和为$(2^{0}+2^{1}+2^{2})*(3^{0}+3^{
[BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数,其诸指数ai是正整数. 这样的分解称为N的标准分解式. 约数和定理: 对于任意一个大于1的正整数N可以分解正整数:N=P₁^a₁ P₂^a₂…Pn^an,则由约数个数定理可知N的正约数有(a₁+1)(a₂+1)(a₃+1)…(an+1)个,那么N的(a₁+1)(a₂+1)(a₃+1)…(an+1)个正约数的和
bzoj 3629 聪明的燕姿 约数和+dfs
考试只筛到了30分,正解dfs...... 对于任意N=P1^a1*P2^a2*......*Pn^an, F(N)=(P1^0+P1^1+...+P1^a1)(P2^0+P2^1+...+P2^a2)*...*(Pn^0+Pn^1+...+Pn^an) 从小到大枚举素数P,依次判定是否有K满足(P^0+P^1+...+P^K)|X 有一些细节需要处理,比如当前S为某大素数+1...... 一开始打O(√n)一直T两个点,后来改成了O(√s)就过了. #include<cstdio> #inc
BZOJ3629(JLOI2014)聪明的燕姿
(⊙﹏⊙)我交了好久,有坑啊...(如果没有匹配的话,即输出0种情况要记得换行...) 就是搜索,加上一点数论,并不太难... #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 100100 using namespace std; typedef long long ll; ll n,p[M],ans[M],tot; bool not_pr
LOJ #2234. 「JLOI2014」聪明的燕姿(搜索 + 数论)
题意 给出一个数 \(S\) ,输出所有约数和等于 \(S\) 的数. \(S \le 2 \times 10^9\) ,数据组数 \(\le 100\) . 题解 首先用约数和定理: \[ \begin{align} n &= \prod_{i} p_i^{a_i} \\ \Rightarrow \sigma(n) &= \prod_{i} (\sum_{j=0}^{a_i} p_i^j) \end{align} \] 那么,我们可以通过从小到大来枚举质数 \(p_i\) 及其指数 \(
bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ pi^xi ) xi∈[0,ki] 原本枚举小于S的质数,通过先判断S-1是不是质数 就可以 枚举根号S内的质数 #include<cstdio> #include<algorithm> using namespace std; #define N 1000000 ],cnt; ];
2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)
传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style="position: relative;">logknlogkn,因此搜索很快. 注意,如果最后剩下的乘积-1是一个质数,那么这是一个可行解. 另外对于这道题,我们只需要筛出1e5的素数就够了,太大的直接枚举自己打的素数表判就行了. 代码: #include<bits/stdc++.h&g
BZOJ 3629 JLOI2014 聪明的燕姿 约数和+DFS
根据约数和公式来拆s,最后再把答案乘出来,我们发先这样的话递归层数不会太大每层枚举次数也不会太多,然而我们再来个剪枝就好了 #include<cstdio> #include<iostream> #include<cmath> #include<algorithm> #include<vector> using namespace std; inline int read() { ; char ch=getchar(); ')ch=getchar
bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大于1的正整数N可以分解正整数:N=P₁^a₁ P₂^a₂…Pn^an,则由约数个数定理可知N的正约数有(a₁+1)(a₂+1)(a₃+1)…(an+1)个,那么N的(a₁+1)(a₂+1)(a₃+1)…(an+1)个正约数的和为f(N)=(P₁^0+P₁^1+P₁^2+…P₁^a₁)(P₂^0+P₂
洛谷 P4397 [JLOI2014]聪明的燕姿 / TOPOI 测验1315, 问题E: 1935: 聪明的燕姿 解题报告
题目链接 : 1. 洛谷 2.topoi . 大致题意:输入一个数s,找出所有约数和为s的数 关于一个数的约数和求法: 一个>1的整数可以被分解为多个 质数 的乘方,设数 s = p1k1 * p2k2 * p3k3 *......*pnkn 根据 组合 的思想 s的约数和 = (p10 +p11+p12+......+p1k1)*(p20 +p21+p22+......+p2k2)*........*(pn0 +pn1+pn2+......+pnkn); 数据很大,有多组测试数据,首先想到
bzoj 3629: [JLOI2014]聪明的燕姿【线性筛+dfs】
数论+爆搜 详见这位大佬https://blog.csdn.net/eolv99/article/details/39644419 #include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int N=100000; int s,p[N+5],tot,ans[N+5],con; bool v[N+5]; bool ok(int x) { if(x==1) retu
热门专题
beanshell将返回的多个值拼接
谷歌浏览器模拟鼠标点击
windows 脚本关闭多个tomcat服务
powershell执行多行命令
python counter 非整数
c# throw 和 throw ex区别
nessus导入cookie
axios传含数组的对象
pearson相关性分析python
idea2019.3破解教程
w3svc服务无法启动 80被占用
nginx $args 取值
setupfactory 怎么设置安装目录为注册表里的值
redis数据显示16进制
maven打包插件不生效
HttpServletRequest 获取body参数
linux服务器内存不够
UIPageControl 设置翻页
vscood右键不显示最近文件
eclipse某些项目因位于