关于ADMM的研究(一) 最近在研究正则化框架如何应用在大数据平台上.找到了<Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers>这篇文章,感觉很适合现在的研究.下面转载的一篇博客,写的很细致,很有用. 业界一直在谈论大数据,对于统计而言,大数据其实意味着要不是样本量增加n→∞,要不就是维度的增加p→∞,亦或者两者同时增加,并且维度与样本量的增
前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持向量机如何解决线性可分和非线性可分问题,最后还会对 SMO 算法进行推导以及对 SMO 算法的收敛性进行简要分析,但受限于篇幅,本文不会对最优化问题.核函数.原问题和对偶问题等前置知识做过于深入的介绍,需要了解相关知识的读者朋友请移步其它文章.资料. SVM 推导过程主要参考自胡浩基教授的机器学习公
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true when the command line has --something in it. ./a.out -h ./a.out --help 打印keys的相关内容. #include <opencv2/core/utility.hpp> #include <iostream> using