一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二.CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人. 总结起来相比于CP
一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二.CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人. 总结起来相比于CP
问题背景 一年前,我们开始利用.Net 4.0的TPL(Task Parallel Library)并行计算技术对复杂计算的功能节点进行性能优化,这些复杂计算往往会包含大量对数据库的操作.在应用TPL时我们发现,如果每个Task都开启独立事务(RequireNew)的话,那么一切工作正常.但是,如果每个Task需要与父线程工作于同一个事务中(Required),则多线程并行计算时会经常性地抛出"其他会话正在使用事务的上下文"的错误(Transaction context in use