pca是一种黑箱子式的降维方式,通过映射,希望投影后的数据尽可能的分散, 因此要保证映射后的方差尽可能大,下一个映射的方向与当前映射方向正交 pca的步骤: 第一步: 首先要对当前数据(去均值)求协方差矩阵,协方差矩阵= 数据*数据的转置/(m-1) m表示的列数,对角线上表示的是方差,其他位置表示的是协方差 第二步:需要通过矩阵对角化,使得协方差为0,只存在对角线方向的数据,这个时候就能得到我们的特征值和特征向量 第三步: 将当前数据*特征向量就完成了降维工作,特征值/特征值之和, 可以表示特