1. Alternating Least Square ALS(Alternating Least Square),交替最小二乘法.在机器学习中,特指使用最小二乘法的一种协同推荐算法.如下图所示,u表示用户,v表示商品,用户给商品打分,但是并不是每一个用户都会给每一种商品打分.比如用户u6就没有给商品v3打分,需要我们推断出来,这就是机器学习的任务. 由于并不是每个用户给每种商品都打了分,可以假设ALS矩阵是低秩的,即一个m*n的矩阵,是由m*k和k*n两个矩阵相乘得到的,其中k<<m,n.
ALS矩阵分解 一个 的打分矩阵 A 可以用两个小矩阵和的乘积来近似,描述一个人的喜好经常是在一个抽象的低维空间上进行的,并不需要把其喜欢的事物一一列出.再抽象一些,把人们的喜好和电影的特征都投到这个低维空间,一个人的喜好映射到了一个低维向量,一个电影的特征变成了纬度相同的向量,那么这个人和这个电影的相似度就可以表述成这两个向量之间的内积.我们把打分理解成相似度,那么“打分矩阵A(m*n)”就可以由“用户喜好特征矩阵U(m*k)”和“产品特征矩阵V(n*k)”的乘积.矩阵分解过程中所用的优化方法
Vi t1.txt1,101,5.01,102,3.01,103,2.52,101,2.02,102,2.52,103,5.02,104,2.03,101,2.53,104,4.03,105,4.53,107,5.04,101,5.04,103,3.04,104,4.54,106,4.05,101,4.05,102,3.05,103,2.05,104,4.05,105,3.5 1.装载数据scala> import org.apache.spark.mllib.recommendation.{
TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) --- 由误差导致的真实值和估计值之间的偏差平方和(Sum Of Squares Due To Error) ESS: Explained Sum of Squares (回归平方和) --- 被模型解释的方差(Sum Of Squares Due To Regression) TSS=RSS+ESS R2: Coefficien
本文来自<deep multi-scale video prediction beyond mean square error>,时间线为2015年11月,LeCun等人的作品. 从一个视频序列中预测未来的图像帧涉及到构建一个内部表征,该表征能够对准确对图片帧演化(如图像内容和动态)进行建模.这就是为什么像素空间的视频预测主要是通过无监督特征学习来完成.虽然光流在CV领域已经研究的很成熟了,却很少用在未来图像帧预测中.许多视觉应用可以通过视频的下一帧来获取信息,且不需要对每个像素轨迹进行追踪.
近日,Neuromation 团队在 Medium 上撰文介绍其最新研究成果:利用卷积神经网络(CNN)评估儿童骨龄,这一自动骨龄评估系统可以得到与放射科专家相似或更好的结果.该团队评估了手骨不同区域,发现仅对掌骨和近端指骨进行评估,得到的结果与对整个手骨进行评估的结果相差无几.为了克服放射图像的质量和多样性问题,该团队引入了严格的清理和标准化过程,以增强模型的鲁棒性和准确率,提升骨龄评估的准确率.提高结果的可复现性以及临床医生的效率. Alexander 的论文<Pediatric Bone