上篇(webRTC中语音降噪模块ANS细节详解(二))讲了ANS的处理流程和语音在时域和频域的相互转换.本篇开始讲语音降噪的核心部分,首先讲噪声的初始估计以及基于估计出来的噪声算先验信噪比和后验信噪比. 1,初始噪声估计 webRTC中ANS的初始噪声估计用的是分位数噪声估计法(QBNE,Quantile Based Noise Estimation),对应的论文为<Quantile Based Noise Estimation For Spectral Subtraction And Wien
import matplotlib.pyplot as plt X=[56.70466067,56.70466067,56.70466067,56.70466067,56.70466067,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,59.3
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding," Advances in Neural Information Processing Systems, vol. 30, 2017, Accessed: Jul. 31, 2021. [Online]. Availabl
这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟欠账太多了). 量化 A. T. Suresh, Z. Sun, J. H. Ro, and F. Yu, "Correlated quantization for distributed mean estimation and optimization," arXiv:2203.0492
A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keywords Federated learning; Literature review; Citation analysis; Research front Abstract FL是一种协作地分散式隐私保护技术,它的目标是克服数据孤岛与数据隐私的挑战.本研究旨在回顾目前在工业工程中的应用,以指导未来的落地应